
...----------- ---------

INFORMATION AND SUPPORT FOR BLITZ BASIC 2 USERS WORLD WIDE

.YESjt$tfheorie everybody has been waiting for; ISSUE 2 of Blitz
USERmaga.zine! We're. still alive arid kicking, don't worry about
that! Featuring a whole host of new commands .including DPaint
anim Supportf~Re)(xc9mh:l~nd,~Jor Y9t.J~ Blitz, applications, system
friendlyseri .. alportic9i11'tli~nd~ t (~pe~c!'W':J'ttE,Qsactuencerand more.
And this time)tsdr;t a'disksq'yoiJ dori,:·thave, to type them in! "
'AL'SOINctUDES'PBE-RELEASE,Oli BliITZ 3D, get into it!
.:. ':.'i/';.),:".' '. \:" '. > :.' :' .. (... ,' .. '.':.: ~;' ... '.,' .. Y:>. :,}}l..,p it,' '. . ,.

,----------~

HINTS TRICKS & TIPS
' Parameters always need to be in brackets when using Blitz 2 functions (commands that
return a value).

'II you want your program to run from the workbench always use the WBStartup command
at the very top of your program.

' Always have runtime errors enabled when testing your programs.

'Always disable runtime errors when testing your program for speed.

' Turnoff overflow errors in the runtime errors requester if you do not want your program
stopped when var.b>127, var.w>32767 etc.

'Always select Make-Smallest code in the options requester when you are creating an
executable file.

' Never return from a subroutine from within a Select..Case structure without doing a Pop
Select before the Return.

'Use a SetErr:End:End SetErr to stop programs crashing with runtime errors disabled when
an error occurs, if for instance the program is run on an Amiga with too little memory or from
the wrong directory this will ensure a clean exit without a guru.

' Use shift-Ieftarrow to move the cursor across to the same indent as the line above when
writing structured programs.

' Delete the I:BlitzEditor.opts file if you have changed from running your Amiga workbench in
noninterlacelinterlace. The editor will run in the same resolution as that of Workbench if it
does not find the .opts file.

' If you accidentally loose some of your program and save it try loading the .bak file which
contains your program as saved before the last ~ave .

' II you want a command added to Blitz 2 write to Acid Software.

'Use BBlit not OBlit if your Blits are messing up the background.

' Don't use more than one condition in If Then structures with commands like OpenFile,
ReadFile, Addltem i.e. dont use If data=1 And OpenFile(blah) as even if data<>1 the file will
still be opened.

' Use the EVEN directive after dc.b if you want subsequent data to be word aligned.

'The ds instruction in Blitz does not put zeros in the area like Genam does so if converting
machine code to Blitz replace with dcb.

'Always back up your programs on separate disks just to be safe.

'If your program operates on strings always make sure the string buffer setting in options is
set to the largest possible string your program will deal with (default=10240). The other
settings are all for compile time buffers.

'Never, ever, ever let your friends make photocopies of Blitz manuals and User magazines.

2 Blitz User Issue 2 I

--

Blitz User is a
publication of Acid
Software.

Duplication of this
magazine is
prohibited however
all ideas and
programs included
In this magazine
may be used in
any size, shape or
form.

Acid Software
takes no
responsibility for
the reliability of
programs
published in this
magazine.

Editor

Simon Armstrong

Art Director

Rod Smith

Forward all
contributions,
advertising and
correspondence to:

ACID SOFTWARE
10 StKevins
Arcade
Karangahape Rd
Auckland
New Zealand

fax:64-9-358-1658

Editorial 4
No we haven't forgotten about you, in fact
we've packed this issue nice and full, just
for you!

Letters 5
Public opinion at it's finest from Blitz 2 users
world wide.

Back in the office... 6
Latest rumours about our wonderfuyl office,

Groovy Routines 7
Mark contributes cd, getcdn and daten

Buzz Bar 2 10
Part 2 of the game that wasn't too hot but is
now!

Iso Blocks 13
A look at drawing in an isometric perspective.

NEW COMMANDS 15

Documentation to the update included on the
cover disk.

AnimLib 15
Various commands 17
SpeakLib 20
MedLib 23
Serial Lib 25
Arexx 28
3DLib 39

Library Development 43
More in depth docs for the professionals.

EDITORIAL
Thanks to everyone who

has written to us after
buying Blitz 2. Sorry if we
haven't replied, we're a
small operation and
hopefully we'll cover most of
peoples complaints and
suggestions in either this
issue or the next of Blitz
User, a magazine that's
looking like another manual!

I'm really looking forward
to getting Blitz-Net up and
running, I spend far too
much time on local boards
arguing about how
uncompetetive Amiga is with
PC and how stupid the new
chip set is and this and that.

I'd much prefer to be
logging onto a board that
concentrated on
programming ideas and
fantasies, looking after Blitz
users and the like, so
hopefully, very soon now in
fact, we'll have something
up and running.

The main nodes will be in
Koln Germany, Arizona
USA, Sydney Australia and
of course Auckland New
Zealand.

One of the main
objectives will be to allow
users to download entire
week loads of mail quickly
so as not to cost much
phone time and use floppy­
mail for inexpensive transfer
of large programs.(In most
places it costs the same to
put a floppy disk in the mail
as it does to log onto a BBS
long distance for 2 minutes).

The main point is that not
many people have much
money left over after buying

4 Blitz User Issue 2 I

software.

O.K. the main objective of
this issue of Blitz User is
new commands that Mark
and others have added to
Blitz BASIC 2. A lot of these
were in response to user's
requests so don't say we
ignore everyone. We at Acid
Software want to continually
upgrade Blitz every few
months, its hopefully going
to be one of our big selling
pOints, and we're not going
to charge the earth either!

So, if you want something
added please write
describing what it is exactly
you want, how you think we
can implement it and if
possible some code (even in
C) that does the job.

As for sales, they have
been ticking along, there's
advertisments coming out in
both Amiga World and some
German mags that should
get things going. We do
depend on word of mouth a
lot as we can not yet afford
massive advertising
campaigns telling the world
about the wonders of Blitz.

So, if you can spread the
word, write some demos,
the more we sell the better
support we can afford to
give you the user.

I expect to ship the 1000th
copy by the end of
November which will be
bang on target.

Anyway, back to this issue
of Blitz User, thanks to Greg
Abiss for the Arexx library
and documentation.

What with multimedia and
all the awesome software
coming out for the Amiga,
ARexx is definately a bonus
for prductivity. Now thanks
to Greg you can run your
Blitz programs from Arexx
scripts as well as controlling
other applications as well.

Mark has added support
for anim brushes as well as
full screen anims. There are
quite a few formats for anim
files, we decided that to start
with we will just support that
which DPaint supports, fair
enough yes?

Thanks to Paul Andrews
from Vision Software for
providing the Med3 player,
Teijo Kinnunen's med
format is pretty special (if
you're interested, the MED
editor is available from
AmigaNuts United).

Since givinQ up trying to
give up smoking i've been
super productive, spent a
few hours fixing up BuzzBar
(which I hope to get on a
proper magazine s cover
disk soon) got this magazine
finished, and have even
managed to get some 3D
working to dispel rumours
that it is all a big hoax.

Enjoy, and don't expect
another issue if you don't
send us some friendly mail.

SIMON

LETTERS
The followi ng section

is fo r r II b lis hi n g any
correspondcnce rccci vcll
at Acid Software in New
Zealand. To write to LIS

please lise the following
address:

Acid Software
lOSt Kevins Arcade
183 Karangahape Road
Auckland
New Zealand

If you have a fax our
number is:

64-9-358-1658

The leading 64 is the
international area code
for New Zealand.

Due to the serious
nature of the mail we
have received since the
last issue we have
decided to mix in a little
humour of our own along
with, for the first time,
some genuine user
correspondence!

Greetings to the producers of
Blitz BASIC 2. 10 points for a
fantastic BASIC language hut
r m having some prohlems that
you can clear up, Project
BuzzBar fails at function.w
angle ext.l dO Why? What is

the .hak file for? What do I
need in the C, lihs. I etc. dirs
for a self hooting disc for
insecloids"

Cheers,

YifHowell
Newtown, Australia

O. K. Y~f, to allswer YOI/I'
l)(Jillts ill IIrder ...

I. Part J IIf Project BuzzBar
is illeluded 1111 this mllllths
cliver disk so you should be
able to see where YIIU wellt
wrllllg fl'OlIl the files 1111 the
disk.

2. TIle .bak file is Yllur
program as it was the last time
YOII saved it, this is a backuII so
that if you aecidelltally delete
all impllrtallt seCtill1l IIf Yllur
program alldsal'e it YIIU call
still IlIlId tlze .bak file alld
recllver the section you lost.
Blitz renames YOllr old file liS
the .bak and then saves the lIew
version, this alsll means that if
lise a hard disk, the .wuree
code is Iikelv to be written to a
different part of ti,e disk
increasing Ihe likely hOlld of
recllvery if yllllr drive crashes,
a likely event IIntif Qllantum
kicked Seagates bUIt (hard disk
lalk).

3. I would thillk the easiest
way wlluld be to copy a PDDisk
as II,ey have all the flecesary
fUes. Do a search for allY fOllt
descriptllrs ill the Jllsectoid
source alld make sure VOII hal'e
included Ilwse /tllltS ill' the /tlllts
dmwer.

As Jill' yO/lr other 1/1I1'St;IIIIS
tlwt we didll 't "rillt, I'll get
roulld to thelll flexl issue.

DcaI' Simon,

"ere arc a few extra
suggestions:

I. The filc requester should
he morc customisahle, a device
selector option would he useful.

2. MAX and MIN functions.
3. A function that reads the

system timer.
4. file access is awkward, it

would be easier to use Print#.
5. A boolean primitive type.
6. A menu option to list all

variables in your program.
7. MOD and DIV functions.
8. The function SPACE$
9. A data gadget
Yours Sincerely
Michael Green

lfi Michael, thought I'd prim
this .HI tllhers CtllJ go 1111/111/11 yes
Ihal would be lI;ce, we are
expandi"g lIre gadget library
alld a simple debugger will gil'e
you variable lists etc. SllOuld be
able til tackle slime IIf til is list
ill the next issue,

Simon

Hi guys,
Thanks for a really amazing

language. Using Blitz I can
gradually work into assembler,
I'm glad that Blitz is as
astounding as it is, cos I've had
bad (well, really slow)
experiences with certain other
hyped languages. OK now for a
bug report ...

I. demo disk source files are
a hithuggy.

2. I need a command to
return the pixclwidth of a
proportional text string and a
style command.

3. Data such as shapes can

Blitz User Issue 2 5

not be saved with the
executable.

8. A built in data compactor
would hc nice ala Powerl'acker.

Y. Blitz gurus sometimes
when the wrong disk is inserted

10. Can sOllleone do an
artide on the copper and
advanced effects ...

Thanks for such a powerful
Amiga-friendly system, unlike
AMOS which whacks SOK
onto any executable file!

Thanks Again
Damian Caynes
MUlwillumbah
Australia
p. s II 0 w abo u t B lit z

contacts"! so users worldwide
can contact each other!

Yo Dumiun, weI/we [Ion 'I
WlIlIl el'el)'lhillf.: do we? ClIlI we
selld you lIji"ee Amigll 4000 us
well ?

No seriously yes, yes, 1I11d
yes \I'e're lookillg ill10 il.

Hey BlitzMan,
Just wond.:ring if you would

lIIind featuring in a game I'm
writing, it will be lots of fun.

Mario
p.s. Promise you will never

get killed!

Hi Simon,
Just thought I'd let you know

that this is not some
complicated BBS so then: is no
excuse for sending yourself
nmil!

Regards,
Simon

DISCLAIMER: The
views, attitudes and
ideas expressed in this
section are not
necesarily in agreement
with the editors of this

6 Blitz User Issue 2

BACK IN
THE OFFICE ...
Vision Software, developers of the game you
wouldn't let your kids watch you play Zombie
Apocalypse and the machine code shareware
masterpieces Microbes and Cybernetix have nearly
completed what is certain to be a top 10 smash hit
called Woody's World. Keep your eye out for this
New Zealand blockbuster in the New Year.

Mark Sibly is currently developing a sequel to the
great defender game, this version however will not
be a Blitz PO game as he's gone back to his
favourite assembler, Oevpac 2, to come up with
what could be the most addictive action yet to come
from outside the William's stables.

On the same track the Acid Software Stargate
machine's current high score still stands at
1,315,875 (Mark of course).

High scores for Blitz 2 PO games will not be given
great attention due to rumoured tampering of
source code before users clocked their reported
scores.

The famous rock band Too Much Too Soon
featuring Mark Sibly on lead, Rod on rhythm, Simon
on bass and two friends has disbanded. The office
now has a little more room for computers now the
drum kit and wall to wall Marshalls are no longer in
residence.

Office nicotine levels are at an all time high now
Simon is back chain smoking with the rest of the
office, 200g of coffee is still being drunk per week,
most popular CO of the month goes to the new
Suicidal Tendency's disk the Art of Rebellion.

Office personalities will be interviewed in Blitz User
next issue so if you have any questions, write in.

GROOVY ROUTINES
Welcome to a new Blitz User regular feature.
Each month, this column will present a series
of useful little routines you may wish to use in
your own programs. AI routines have been
written as 'self-contained' as possible,
allowing you to save them to disk for later
'include'-Ing.

Many of these routines make use of Amiga
library calls. You can identify library calls
through the '_' suffix on commands - for
example 'Lock_'.

Note that when you are using Amiga library
calls, they may be either in the form of
functions (ie - they return a result) or in the
form of statements (ie - any value returned is
ignored). If you are using a library call as a
function, you MUST enclose any parameters
with brackets.

For example:
I.I=Lock_ "myfile",-2

is NOT legal, and will cause a syntax error at
compile time.

I.I=Lock_("myfile" ,-2)

is the correct way to do this.

Likewise, library calls of the statement form
should not normally have their parameters
bracket enclosed.

For example:

Examine_(cd,ex)

is NOT legal, and will also cause a syntax
error at compile time.

Examine_ cd,ex

is the correct way to do this.

Another thing to be wary of when using any of
these routines is global variable conflicts. For
example, the 'OATE.BB2' routines make use
of 3 global arrays ('mnthO', 'mon$O', 'day$O'),
and one global variable (thedate). When
using this routine, you must be careful that
these variable names are not used
elsewhere.

And now, let's get on with this month's groovy
routines ...

GROOVY ROUTINE #1

This useful little function allows you to set the
current directory from within your programs.
This is similar to typing 'cd path name' from
the cli.

The cd function takes one parameter, the
directory you wish to change to, and returns a
true (-1) value if the directory change was
successful, or a false (0) value if
unsuccessful. For example:

XINCLUDE "cd.bb2"

If cdl"work:")

:cd successful!

Else

;cd unsuccessful ...

Endlf

; .. •• ···START OF CD.BB2 • .. •
Function cd(nS)

LI=Lock_(&nS.-2)
If I

CurrentDir_ I
Function Return -1

Else
Function Return a

Endlf

End Function

; END OF CD.BB2

GROOVY ROUTINE #2

This function may be used to determine the
current directory. This is similar to typing 'cd'
at the eli with no parameters.

Here is an example of using getcd:

Blitz User Issue 2 7

XINCLUDE "getcd.bb2"
as=getcdtl
NPrint as
MouseWait

; 'START OF GETCD.BB2 ••••••••

FunctionS getcdtl ;return text of current
directory ...

:allocate memory for a fileinfo block ...
eX.I=AllocMem_(260,1)

:this bit of magic picks up the current
;directory lock!
cd.I=Peek.l(Peek.I(Peek.I(4)+276)+ 152)

;make a duplicate of this lock so we
;can safely unlock it!
cd=DupLock_(cd)

Repeat

; fill in fileinfo block
Examlne_ cd,ex

;pick up directory name
nS=PeekS(ex+8)

;go to parent dir & unlock old dir
cd2.I=cd
cd=ParentDiUcd):UnLock_ cd2

;if no parent, then this is root.
It cd=O Then nS+":" Else nS+"/'

;add name to curent dir name
cdS=n$+cdS

Until cd=O
;until no more parent directories

;free fileinfo block mem
FreeMem_ ex.260

Function Return cdS

End Function

; END OF GETCD.BB2

GROOVY ROUTINE 3

By including this bit of code in your programs,
you can easily determine the date and time.

8 Blitz User Issue 2 I

The 'dateO', 'date20' and 'timeO' functions all
return strings. the date functions return strings
reflecting the current date, in 2 different formats,
and the time function returns the time.

Before using these functions, you should first use
the 'getdateO' statement. This reads the current
date and time into a 'thedate' variable. The date
and time functions simply decode this information
into appropriate strings.

Here is an example:

XINCLUDE'date.bb2"
getdatetl
NPrint date I I
NPrint date21 I
NPrint timetl
Mousewait

; START OF DATE.BB2

NEWTYPE.dateinfo

d 1.1 ;day count
d2.1 ;minutes count
d3.1 ; ticks count (50 ticks per second)

year.w
month.w
day.w
hours.w
mins.w
secs.w

End NEWTYPE

DEFTYPE.dateinfo thedate
USE PATH thedate

Dim mnth(l2) ,monS(12) ,dayS(7)

mnth(1)=3 1 :mon $(1)= "January"
mnth(2)=28:monS(2)="February'
mnth(3)=31 :monS(3)="March"
mnth(4)=30:monS(4)="April"
mnth(5)=31 :monS(5)="May"
mnth(6)=30:mon$(6)=" June"
mnth(7)=31 :mon$(7)='July'
mnth(8)=31 :mon$(8)="August'
mnth(9)=30:mon$(9)="September'
mnth(10)=31 :mon$(l O)="October'
mnth(1l)=30:mon$(l1)="November"
mnth(12)=31 :mon$(12)="December'

dayS(1)="Sunday"
dayS(2)="Monday"
dayS(3)="Tuesday"
dayS(4)="Wednesday"
dayS(5)="Thursday"
dayS(6)="Friday"
day$(7)="Saturday"

Statement getdatel)
Shared thedate,mnthO
DateStamp_ &thedate
y=1978
d=\dl+l
While d>365

d-365
If Y MOD 4=0 Then d- 1
y+l

Wend
m=l
mnth(2)=28:1f y MOD 4=0 Then mnth(2)=29
While d>mnth(m)

d-mnth(m)
m+l

Wend
\year=y
\month=m
\day=d
\hours=\d2/60
\ mins= \ d2 MOD 60
\secs=\d3/50
End Statement

FunctionS numln)
Function Return Right$("O"+Str$(n),2)
End Function

FunctionS datel)
Shared thedate,monSO,daySO
dS=dayS(\dl MOD 7+ 1)+" " +Str$(\day)+ " " +monS(\month)+" "+Str$(\ year)
Function Return dS
End Function

FunctionS date2f)
Shared thedate
Function Return numl \ day)+"/, +num(\ month)+" /"+Str$(\ year)
End Function

FunctionS timef)
Shared thedate
Function Return numl\hours}+":"+num(\mins}+":"+num(\secsl
End Function

; ••••••••••••••• END OF DATE.BB2 ••••••••••••••

I Blitz User Issue 2 9

BUZZ
BAR2
Apologies are in order for doing

such a rush job in the first issue ala
the scribble at the bottom of the
listing. My accelerated machine failed
to inform me that buzzbar was infact
running as slowly as an Amos
program ... oops I thought.

The number 50 that needed
changing was located in drawstars
NOT setupstars, so before you go any
further go to the version you typed in
and try changing it, better?

The new version has the source
code on the disk ("thank goodness· I
hear you say), I have printed it here
so you can refer to the following
explanations as we go.

First I have introduced a dual
playfield display, with a nice big
backdrop that scrolls. The I FF is
512x512 but our bitmap is 832x768
so it can wrap around invisibly.
Without being complicated, the scroll
command copies the left edge of the
bitmap to the right so once we have
scrolled across to the right we can
reset the scroll counter to 0 without
the display changing. See the
examples disk for simpler code
examples of dual playfields and
scrolling.

The ssin and ccos macros just
saved some typing, !ssin{var} is
expanded by the compiler into:

qsin((var Isr 6)& 1 023)

As you may have noticed this is
actually only required because Blitz
BASIC's Isr doesn't work quite right!

The onscreen macro checks if the

10 Blitz User Issue 2

INCLUDE qfunes.bb

NEWTYPE .ship
x.w:y:rot:thrust:rspeed:ld:frame:xv:yv:px:py:upd

End NEWTYPE

Dim list nme.ship(SO) ;enemy
Dim list bul.ship(50) ;bullets
Dim list bng.shlp(SO) ;exp/oslofls

Dim qSin.q(1023) ;/ook up tables
Dim qeos.q(1023)

me.ship \x;O.O.O.O.O.O.O

BitMap 0.320+64.256+64.3;doublebuffered display
BitMap 1.320+64.256+64.3
BitMap 2.832.768.3 ;background

loadShapes O:shlps.shapes'
loadShapes 64:bombs.shapes'
LoadShapes 80:shards.shapes'

loadBltMap 2. 'moon.iff'
Use BHMap2
Scroll 0.0.320.512.512.0
Scroll 0.0.832.256.0.512
Use BitMap 0

LoadPaleHe O:ships.iff'
loadPaleHe O. 'moon.iff'.8

Queue 0.100
Queue 1.100

BLITZ
Mouse On

;setup blitz display

BlltzKeys On:BltMaplnpui
Slice 0,44.320.256.Sfffa.6.8.32.320+64.832
Use Palette 0

Gosub seiupslneos
Gosub setupnme
Gosub setupdlsplay

While NOT RawStalus(S45) ;maln loop
VWalt
ShowF db.32.32
ShowB 2.(me\x lSR 6)&51l.(me\y LSR 6)&511
db;l-db
Use BitMap db
UnQueuedb
Gosub drawnme
Gosub drawbuilets
Gosub moveship
Gosub moveexplosions

; MOVE #$fft.$dffl80
Wend

End

.setupdisplay
Return

Macro ssln qsin(C 1 lSR 6)& 1023):End Macro
Macro eeos qeos(C 1 lSR 6)& 1023):End Macro
Macro onscreen RectsHltC 1. '2.1.1.12.12.320+32.256+32):End
Macro

Ixentr; 160+32
Iyentr; 1 00+32

r-----------------------------------_________________________________ __

x,y coordinates are inside the play
area. Using macros like this is faster
than calling procedures and keeps
the program nice and tidy.

The moveship routine is the same
except for one bug which is
important. The old line

If Addltem(bul()) And rl=O

will add an item to the list even if
rk>O, this was leaving random bullets
as a bullet item would be allocated
even though it wasn't used. This is

also applicable to functions like
OpenFile() and users should be
aware.

The move explosions routine is
new, the explosion's rot value
decrements to -1 drawing the
animations of the shard. It is then
removed from the list. The shards
would look better if they looked as
though they were falling towards the
planet but my artistic skill just wasn't
up to it.

The drawnme has a few additions.
The \upd field is used to update the
aliens direction every 6 frames, on
initialisation the aliens are assigned a
random \upd so they don't all get
changed on the same frame. This is
an example of speeding things up a
lot with out any noticable change to
the game play. They still get moved
every frame.

The \frame field allows us to assign
different shapes to different aliens.

Also the way I was moving them
was pretty stupid, now instead of just
rotating them a constant amount
towards you, I treat \rspeed as a
maximum amount of turn, this makes
things much cooler!

Drawbullets now has collision
detection. We first check to see if
there is anything on the bitmap with
BlitColl (see new commands) and if
there is we search through each
nmeO to find who we have killed.

Easy huh! We then kill the nme
with, yup, KiIIltem which removes it
from the nmeO list and add 5 shards
to the explosion list, moving at
random directions.

.moveship
II RawStatus(S31) OR Joyx(1)=-1 Then me\rot-1400
II RawStatus(S32) OR Joyx(1)= 1 Then me \ rot + 1400
me \ rot +(t.1ouseXSpeed-200)
II RawStatus(S38) OR Joyb(0)&2 OR Joyy(1)<>0; thrust

me\xv+!ssinlme\rotl ASL 4
me\yv-!ccoslme\rotl ASL 4

Endll
II RawStatus(S39) OR Joyb(O)& 1 OR Joyb(1)& 1; fire

IIrl=O

Else

If Addllem(bul(»

Endlf
Endll

bulO \ x=rne \ x .rne \ y .me \ rot
buIO\xv=!ssinlme\rotl ASL 8+rne\xv
bulO \ yv=-!ccosl me \ rotl ASL 8+me \ yv
rl=8
rne\xv-!ssinlrne\rotl ASL S ;reverse thrust
rne\yv+!ccoslrne\rotl ASLS

rl=O
Endlf
me\xv-me\xv ASR S ;drag
me\yv-me\yv ASR S
me\x+me\xv
me\y+me\yv
QBllt db ,«me \ rol+2048) LSR 12)& IS,/xcnlr ,/ycntr
II rl>O Then rl- 1
Return

.moveexploslons
ResetUst bngO
USEPATH bngO
While Nextltem(bngO)

\rol-l
If \rol>-1

\x+\xv:\y+\yv
px=«\x-me\x) ASR 6)+lxcnlr
py=«\y-me\y) ASR 6)+/ycntr
II !onscreenlpx,pYI

QBIIt db.80+\rot/4,px,py
Endlf

Else
Klilitem bngO

Endll
Wend
Return

.drawnme
ResetUst nmeO
USEPATH nmeO
While Nextltem(nme(»

\upd-l
If \upd<O

\upd=S
ang.w=32768-anglelme\x-\x,me\y-\yl-\rol
s=Sgn(ang):ang=Abs(ang)

Endll

II ang>\rspeed Then ang=\rspeed
\rol+s'ang ;rotate towards me
\xv+!sslnl \ roll , \thrusl;thrust
\yv-Iccosl\roll' \thrust
\xv-\xv ASR 6;drag
\yv-\ yv ASR 6

\x+\xv ;speed
\y+\yv
\px=«\x-me\x) ASR 6)+#xcnlr
\ py={(\ v-me \ y) ASR 6)+#ycntr
If !onscreenl\px,\pyl

QBIIt db,(\roILSR 12)& lS+\frame,\px,\py
Endll

Wend

I Bliti User Issue 2 11 I

Last but not least the setupnme
now selects an id for the 2
wonderful shapes I have drawn.
Each has a different range of
turning and thrust variables.

Things to do:

I've been a bit brief on the
explanations front, if you haven't
had much experience with writing
arcade games the first thing to do is
probably mess with the graphics.

The planet surface is called
moon.iff load it into DPaint, change
the palette, add some mountains,
ravines, or go for a completely
different look. Keep the colors dark
so the foreground ships stand out.

If you want to change or add
aliens, use DPaint to mess with the
ships.iff picture. Once finished, load
the new page into shapesmaker,
enable auto-centre and create a
ships.shapes file.

To change the difficulty of the
aliens goto the setupnme and alter
the two numbers in the
\thrust=32,16384, these represent
how fast the aliens can go and how
fast they can turn towards you.
Making them bigger will make them
faster to react to your change in
position.

Well thats it for this issue, as with
the other games on the disk you can
only release playable versions if you
add sound effects and put a Blitz 2
reference somewhere IN THE
GAME.

Look forward to seeing some new
graphics at least!

Simon

p.s.

Use the escape key to exit from
the game, next issue we probably
want attack waves, a front end, 5
lives and a null modem setup as
promised last issue!

12 Blitz User Issue 2

Return

.drawbullels
ResetList bulO
USEPATH bulO
While Nexlllem(bul(»

\x+ \xv ;speed
\y+\yv
px=«\x-me\x) ASR 6)+lxcnlr
py=«\ y-me\ y) ASR 6)+/ycnlr
If !onscreen{px.py}

If BlitCoII(64.px.py)
ReselLisl nmeO
While Nexlllem(nme())
If

ShapesHII(16.nmeO\px.nmeO\py.64.px.py)
For 1=1 T05

Endlf

If Addllem(bng(»
bngO\x=\x.\ y.31
bngO \ xv=nmeO \ xv /2+Rnd(64)-32
bngO \ yv=nmeO \ yv /2+Rnd(64)-32
Endlf
Next
Kllillem nmeO
Endlf

Wend

QBIII db.64.px.py
Else

Kllillem bulO
Endlf

Wend
Relurn

.setupshlpS:
For 1=1 To 15

CopyShape O.l:generate rotations
Rotate 1.1/16
MldHandlel

Next
Return

.setupnme:
USEPATH nmeO
Fori=1 To 16

Next

AddllemnmeO
\x=Rnd(65535).Rnd(65535).Rnd(65535)
\ld=Rnd(2)
Select \id

Case 0:\ thrust=32.16384:\ frame= 16
Case 1: \lhrust=20.8192: \ frame=32

End Select
\upd=Rnd(6)

Return

.setupsincos
For i=O To 1023

r.f=i'PI/512
qsin(i)=Sln(r)
qcos(i)=Cos(r)

Next
Relurn

ISO-BLOCKS
ISO-BLOCKS is an

example of using
isometric perspective
to display three
dimensional graphics.

It is a useful method
for games as well as
displaying 3D bar
graphs.

The illustration on
the following page is a
basic diagram of how
the x,y and Z axis are
displayed on the
screen.

The file blocks.iff
and blocks.shapes in
the iso blocks drawer
of the cover disk
contain blocks and
spheres in 5 colours
that the listing loads in
the first two lines.

The program then
opens a hires interlace
screen, sets the
palette correctly and
defines the
screensbitmap as
BitMap#O.

The macro !p
converts an x,y,z
coordinate to a screen
x and y coordinate.

'1 '2 and '3 are
replaced by the x,y,z
parameters when the
macro is called.

This means when
we reference the
macro in the drawgrid
routine:

Blit c-1,!p{x,y,z}

the compiler
expands the macro so
the line reads ...

LoadShapes O,"blocks.shapes"
LoadPalette O:blocks.iff"

Screen 0,16+8+4
ScreensBltMap 0,0
Cls:Use Palette °
#xoff=320
#yoff=252

Macro p #xoff+ '1*9-'2*6,#yoff+' 1*3+ '2*6- '3*7:End Macro

Dim grid.b(30,30,30)

Statement gplot{x,y,z\
Shared gridO,pen
grid(x+ 15,y+ 15,Z+ 15)=pen

End Statement

Statement cube{x,y,z,w,l,h\
For zz=z-h To z+h
For yy=y-I To y+1
For xx=x-w To x+w
gplotlxx,yy.zz\

Next
Next

Next
End Statement

Statement drawgrid{\
Shared gridO
For z=-15 To 15
Fory=-15To 15

For x=-15 To 15
c=grid(x+ 15,y+ 15,z+ 15)
If c Then Blit c-1.!plx,y ,z\

Next
Next

Next
End Statement

For i= 14 To ° Step -1
pen=(i MOD 4)+5
cube(O,O,-Li.i.O\

; draw pyramid

Next

drawgridl\

MouseWait

End

ISO-Blocks listing

I Blitz User Issue 2 13

Blit c-1,#xoff+x*9-
y*7,#yoff+x*3+y*6-z*7

The grid(30,30,30) array
represents each point in a
three dimensional space
similar to a 3D checkers
game, grid(15,15,15)
represents the very middle of
this space.

The gplot statement sets
the appropriate point in the
grid space to the value of
pen.

The cube statement
colours in a cube of points in
the space starting at point
x,y,z with w=width, 1=length
and h=height.

The drawgridO statement
draws all the paints in the
grid array as blocks on the
screen with the Blit
command.

The blocks have to be
drawn from furthest to
nearest so that blocks behind
others never appear on the
screen as being in front of
them.

The pyramid loop draws
squares starting at the base
getting smaller as it loops
upwards.

Things to do:

OK, thats the concept in
place. I've had a few ideas
for expanding on this
program.

First to get a better idea of
the space you're working in
insert a temporary line after
c=grid(.. in the drawgridO
statement to c=int(rnd(5))+ 1
to fill the screen with blocks
disregarding the contents of
gridO·

Use c=int(rnd(5))+6 to
draw spheres.

14 Blitz User Issue 2

Now take out the 4 lines
that draw the pyramid and
try drawing other paterns
using the cube statements
such as ...

pen=1 :cube{O,O,O,15,1,1}
pen=2:cube{O,O,O,1,15,1 }
pen=3:cube{O,O,O,1,1,15}
pen=6:cube{O,O,O,3,3,3}

If you wish, you could
change the blocks in the iff
so that there are lines on
the top and sides of
adjacent bricks not just on
the fronts. I think this would
improve their look a lot.

Use shapesmaker to
generate the new .shapes
file (set auto centre before

converting them).

You could also try
desigining a 32x32 pixel 32
colour bitmap in dpaint and
use the colour of each pixel
to draw a vertical bar on the
grid with height
corresponding to the pixel
colour.

The code would look
something like the
following, don't forget to
load the iff into bitmap 1
and maybe change pen
colour for each bar.

;32x32 picture in bitmap 1

ISOMETRIC
VECTORS
USED
IN
ISO-BLOCKS

y=(-6,6)

use bitmap 1
for x=-15 to 15
for y=-15 to 15

;get colour of pixel
c=point(x+ 15,y+ 15)
; draw a vertical bar
cube{x,y,-15,O,O,c)

next
next
use bitmap 0

Then I got to thinking
that a 3D logo program
would be pretty cool, a
zero gravity turtle! Not
only would it move and
turn normally but could
step up and down "levels·,
however I got a bit
stumped, someone mi~ht
be able to get something
going yes?

This program might
have also given you a few
ideas about how to do a
crystal castles (Atari) type
game perhaps, or a
3Dcheckers, or a chart
generator. If you want to
add menus don't forget to
open a backdrop,
borderless, nogadget full
size window after opening
the screen from which to
hang your menus.

Simon.

z=(O,-7)

x=(9,3)

NEW COMMANDS
ANIM.LIB

The following 4 commands allow the display of Animations in Blitz BASIC. The Animation
must be compalible with the OPaint 3 format, this method uses long delta (type 2) compression
and does not include any palette changes.

Anims in nature use a double buffered display, with the addition of the ShowBilMap command
to Blitz we can now display (play) Anims in both Blitz and Amiga modes. An Anim consists of an
initial frame which needs to be displayed (rendered) using the InitAnim command, subsequent
frames are then played by using the NextFrame command. The FramesO function returns the
number of frames of an Anim.

We have also extended the LoadShape command to support Anim brushes.

The following example loads and plays an Anim on a standard Amiga (Intuition) Screen.

;play anim example

;anim file name could use f$=par$(1) to play anim from eli

f$="test .anim"

;open screen same resolution as animation

ILBMlnfo f$
Screen O,O,O.lLBMWldth,ILBMHelght,ILBMDepth,ILBMVlewMode,"", 1 ,2
ScreensBltMap 0,0

;open extra bitmap same size as screensbitmap for double buffering

BitMap l.lLBMWidth.lLBMHeight,ILBMDepth

;Ioad anim and set screen colours to same as animation

LoadAnim 0.1$,0
Use Palette 0

;draws first frame to current bitmap (1) and bitmap #0

InitAnim 0,0

While Joyb(O)=O
ShowBitMap db ;te// intuition which bitmap to display
VWait ;wait for top of frame
db= l-db ;swap current bitmap
Use BitMap db
NextFrame 0 ;and draw next frame

Wend

Biltz User Issue 2 15

Statenlent: LoadAnim
Syntax: LoadAnim AnimH,FileName${'paletteH]

Modes: Amiga

Description:

The LoadAnim command will create an Anim object and load a DPaint compatible
animation. The ILBMlnfo command can be used to find the correct screensize and resolution
for the anim file.

The optional PaletteH parameter can be used to load a palette with the anims correct
colours.

Notes: unlike more advanced anim formats DPaint anims use a single static palette for the
entire animation. Like all other Blitz commands that access files the command must be
executed in Amiga mode.

Statement: InitAnim
Syntax: InitAnim Anim#{,Bitmap#]

Modes: AmigalBlitz

Description:

InitAnim renders the first two frames of the Anim onto the current BitMap and the BitMap
specified by the second parameter. The second BitMap# parameter is optional, this is to
support Anims that are not in a double-buffered tormat (each frame is a delta of the last frame
not from two frames ago). However, the two parameter double buffered form of InitAnim should
always be used. (hmmm don't ask me O.K.!)

Statement: NextFrame
Syntax: NextFrame AnimH

Modes: AmigalBlitz

Description:

NextFrame renders the nextframe of an Anim to the current BitMap. If the last frame of an
Anim has been rendered NextFrame will loop back to the start of the Animation.

Function: Frames
Syntax: Frames (Anim#)

Modes: Amigo/Blitz

Description: :

The FramesO function returns the number of frames in the specified Anim.

16 Blitz User Issue 2 I

VARIOUS NEW COMMANDS

Statement: ShowBitMap
Syntax: Show BitMap [BitMapU]

Modes:Amiga

Library: ScreensLib

Description:

The ShowBitMap command is the Amiga-mode version of the Show command. It enables you
to change a Screens bitmap allowing double buffered (flicker free) animation to happen on a
standard Intuition Screen.

Unlike Blitz mode it is better to do Show BitMap then VWait to sy'nc up with the Amiga's display,
this will make sure the new bitmap is being displayed before modIfying the previous BitMap.

Function: BlitColl
Syntax: BlitColI (ShapeU,x,y)

Modes: Amiga/Blitz

Description:

BlitColI is a fast way of collision detection when blitting shapes. BIitCol! returns -1 if a collision
occurs, 0 if no collision. A collision occurs if any pixel on the current BitMap is non zero where
your shape would have been blitted.

Shapes Hit is faster but less accurate as it checks only the rectangular area of each shape,
where as BlitColI takes into account the shape of the shape and of course1 bcan not tell you
what shapeyou have collided with.

Note: make sure only things that you want to collide with have been drawn on the BitMap e.g.
don't Blit your ship and then try BlitColI!

Statement: ILBMViewMode
Syntax: ILBMViewMode

Modes: Amiga/Blitz

Library: ILBMIFFLib

Description:

ILBMViewMode returns the viewmode of the file that was processed by ILBMlnfo. This is
useful for opening a screen in the right mode before using LoadScreen etc.

The different values of ViewMode are as follows (add/or them for different combinations):

Blitz User Issue 2 17

32768 ($8000) hires
2048 ($0800) ham
128 ($0080) halfbright
4 ($0004) interlace
o ($0000) lores

See Also: ILBMlnfo

Example:

;ilbminfo example

;iff file name could use f$=par$(1) to use eli argument

f$="test.iff'

;get ilbm information
ILBMlnfo f$

;open screen with correct parameters
Screen O,O,O.lLBMWidlh.lLBMHeighl .ILBMDeplh.lLBMViewMode,"', 1 ,2

;Ioad the iff onto the screens
LoadScreen 0.1$,0

;set the palette
Use Palette 0

MouseWail

Statement: LoadSbape
Syntax: LoadShape ShapeN.Filename${.PaletteNj

Modes: Amiga

Description:

The LoadShape command has now been extended to support anim brushes, if the file is an
anim brush the shapes are loaded into consecutive shapes starting with the Shape# provided.

Statelnent: ReMap
Syntax: ReMap colourNO.colourN1[.Bitmapj

Modes: Amiga/Blitz

Library: Sis2dLib

Description:

ReMap is used to change all the pixels on a BitMap in one colour to another colour. The
optional BitMap parameter will copy all the pixels in Colour#O to their new colour on the new
bitmap.

18 Blitz User Issue 2

,--

Statelnent: ShapeGadget
Syntax: ShapeGadget GadgetList#,X, Y,Flags,ld,Shape#[,Shape#]

Mode: Amiga

Description:

The ShapeGadget command allows you to create gadgets with graphic imagery. The Shape#
parameter refers to a shape object containing the graphics you wish the gadget to contain.

The ShapeGadget command has been extended to allow an alternative image to be displayed
when the gadget is selected.

All other parameters are identical to those in TextGadget.

Example:

;ShapeGadget example

Screen 0,3
ScreensBitMap 0,0

;generate 2 shapes for our shape gadget

Cls:Circlef 15,15, 15,2:Circlef 8,8,9,5,3:Circlef 24,8,9,2,3
GetaShape 1 ,0,0,32,32:Clrclef 24,8,9,5,3:GetaShape 0,0,0,32,32

ShapeGadget 0,148,50,0,1,0,1
TextGadget 0,140, 180,0,2:EXIT"
Window 0,0,0,320,200,$ 1 OOf:ClickMe", 1,2,0

Repeat
Until WaitEvent=64 AND GadgetHit=2

Statement: SetBPLCONO
Syntax: SetBPLCONO Default

Modes: Amiga/Blitz

Description:

The SetBPLCONO command has been added for advanced control of Slice display modes.
The BPLCONO hardware register is on page A4-1 of the reference manual (appendix 4). The bits
of interest are as follows:

bit#1-ERSY external sync (for genlock enabling)
bit#2-LACE interlace mode
bit#3-LPEN light pen enable

Example:

Blitz Interlaced Slice Example using BPLCONO

Blitz User Issue 2 19

BitMap 0.640.S12.4

; use SetBPLCONO 4 to set the lace bit on when slice is created

SetBPLCONO 4

BLITZ

;set lace bit

;bitmap width= 1280 means slice's bitmap
;modulos miss each 2nd line

Slice 0.44.640.2S6.Sfffb.4.B.B.12BO.12BO ;cludge the modulo

;every vertical blank either show odd lines or even lines
;depending on the long frame bit of VPOSR hardware register

SellntS
If Peek(Sdff004)<0 Show 0.0.0 Else Show 0.0.1

End Sellnt

; draw lines to prove it

For i= 1 To 1000
Line Rnd(640) .Rnd(S12) .Rnd(640) .Rnd(S12) .Rnd(16)

Next

MouseWait

Speak Commands

The Amiga speech synthesiser can be activated using the following commands. The
narrator.device has been upgraded in Workbench2.0 increasing the quality of the speech. With
a bit of messing around you can have a lot of fun with the Amiga's 'voice', Also note that these
are compatible with the commands used in BiitzUser1's speech program.

Statement: Speak
Syntax: Speak stringS

Modes: Amiga

Description:

The Speak command will first convert the given string to phonetics and then pass it to the
Narrator.Device. Depending on the settings of the Narrator device (see SetVoice) the Amiga
will 'speak" the string you have sent in the familiar Amiga synthetic voice.

Example:

NPrint "Type something and hit return ... "
NPrint "(just return to exit)"
Repeat
as=Edit$(BO)
Speak as

Until as=""

20 Blitz User Issue 2 I

Statement: SetVoice
Syntax: SetVoice rate,pitch, expression,sex, volume,frequency

Modes: Amiga

Description:

SetVoice enables you to alter the sound of the Amiga's speech synthsiser by changing:

rate: measured in words per minute. Default 150, range 40-400.
pitch: the Baseline pitch in Hz. Default 110, range 65-320
expression: O=robot 1 =natural 2=manual
sex: O=male 1 =female
volume: 0 to 64
frequency: samples per second (22200)

As the following example shows you could very well rename the Speak command the Sing
command!

Example:

; sing the praises of Blitz BASIC!

While Joyb(O)=O
pitch=65+Rnd(255)
rate= lOO+Rnd(200)
SetVolce rate.pitch.l.l.64.22200
Speak "BLITZ BASIC"

Wend

Function: Translate$
Syntax: Translate$(string$)

Modes: Amiga

Description:

Translate$O retums the phonetic equivalent of the string for use with the Translate

Example:

Print "Enter a Sentence ":as=Edit$(80)
NPrint "Phonetic=" .Translate$(aS)
MouseWait

Statement: PhoneticS peak
Syntax: PhoneticSpeak phonetic$

Modes: Amiga

Description:

Blitz User Issue 2 21

PhoneticSpeak is similar to the Speak command but should only be passed strings
containing legal phonemes such as that produced by the Translate$O function.

Function: VoiceLoc
Syntax: VoiceLoc

Modes: Amiga

Description:

VoiceLoc returns a pointer to the internal variables in the speech synthesiser that enable the
user to access new parameters added to the V37 Narrator Device. Formants as referred to in
the descriptions are the major vocal tracts and are separated into the parts of speech that
produce the bass, medium and trebly sounds.

The new paramters are as listed

\flags: set to 1 if using extended commands
\fOenthusiasm: amount of pitch difference on accents default=32
\fOperturb: amount of "wurble" ie random shake default=O
\f1adj,\f2adj,\f3adj: pitch adjust for low medium and high frequency formants O=default
\a1adj,\a2adj,\a3adj: amplitude adjust for low medium and high frequency formants O=default
\articulate: speed of articulation 100=default
\centralize: amount of the centphon vowel in other vowels O=default
\centphon: a vowel to which all others are adjusted by the \centralize: variable,

(limited to IY,IH,EH,AE,AA,AH,AO,OW,UH,ER and UW)
\AVbias,\AFbias: amount of bias added to voiced and unvoiced speech sounds, (Y,r,w,m vs
st,sh,!). \priority: task priority when speaking 100=default

Example:

; voicelocO example

NEWTYPE .voicepars ;new V37 parameters available
flags.b
fOenthusiasm:fOperturb
fl adj:f2adj:f3adj
a 1 adj:a2adj:a3adj
articulate:centralize:centphonS
avbias.b:afbias:priority:pad 1

End NEWTYPE

• v. voicepars;VoiceLoc

'v\flags= 1
'v\fOenthusiasm=82,90 ;old aged highly excited voice
'v\fladj=O,O,O ;these are fun to mess with
'v\aladj=O,O,O
'v\cenlralize=50,"AO" ;no effect
'v\ articulate=90
'v\avbias=20,20

Speak "COME ON EVERYBODY, DANCE? boom boom you like my body yes!"

End

22 Blitz User Issue 2

MEDLIB
Statement: LoadMedModule
Syntax: LoadMedModule MedModule# Name

Modes: Amiga

Description:

The LoadMedModule command loads any version 4 channel Octamed module. The following
routines support upto and including version 3 of the Amiganut's Med standard.

The number of MedModules loaded in memory at one time is only limited by the MedModules
maximum set in the Blitz2 Options requester.

Like any Blitz commands that access files LoadMedModule can only be used in AmigaMode.

Statement: StartMedModule
Syntax: StartMedModule MedModule#

Modes: AmigalBlitz

Description:

StartMedModule is responsible for initialising the module including linking after it is loaded from
disk using the LoadMedModule command. It can also be used to restart a module from the
beginning.

Statement: PlayMed
Syntax: PlayMed

Modes: AmigalBlitz

Description:

PlayMed is responsible for playing the current MedModule, it must be called every 50th of a
second either on an interupt (#5) or after a VWait in a program loop.

Statement: StopMed
Syntax: StopMed

Modes: AmigalBlitz

Description:

StopMed will cause any med module to stop playing. This not only means that PlayMed will
have no affect until the next StartMedModule but silences the audio channels so they are not left

Blitz User Issue 2 23

ringing as is the effect when PlayMed is not called every vertical blank.

Statement: JumpMed
Syntax: JumpMed Pattern#

Modes: Amiga/Blitz

Description:

JumpMed will change the pattern being played in the current module.

Statement: SetMedVolume
Syntax: SetMedVolume Volume

Modes: Arniga/Blitz

Description:

SetMedVolume changes the overall volume that the Med Library plays the module, all the
audio channels are affected. This is most useful for fading out music by slowly decreasing the
volume from 64 to O.

Function: GetMedVolume
Syntax: GetMedVolume Channel#

Modes: Amiga/Blitz

Description:

GetMedVolume returns the current volume setting of the specified audio channel. This is
useful for graphic effects that you may wish to sync to certain channels of the music playing.

Function: GetMedNote
Syntax: GetMedNote Channel#

Modes: Amiga/Blitz

Description:

GetMedNote returns the current note playing from the specified channel. As with
GetMedVolume this is useful for producing graphics effects synced to the music the Med
Library is playing.

Function: GetMedlnstr
Syntax: GetMedlnstr Channel

24 Blitz User Issue 2 I

Modes: AmigalBlitz

Description:

GetMedlnstr returns the current instrument playing through the specified audio channel.

Statement: SetMedMask
Syntax: SetMedMask Channel Mask

Modes: AmigalBlitz

Description:

SetMedMask allows the user to mask out audio channels needed by sound effects stopping
the Med Library using them.

Serial Port Commands
The following are a set of commands to drive both the single RS232 serial port on an Amiga

as well:as supporting multiserial port cards such as the A2232 card. The unit# in the following
commands should be set to 0 for the standard RS232 port, unit 1 refers to the default serial port
set by the advanced serial preferences program and unit 2 on refer to any extra serial ports
available.

Function: OpenSerial
Syntax: OpenSerial unitN,baud,io_serflags

Modes: Amiga

Description:

OpenSerial is used to configure a Serial Port for use. As with Open File, OpenSerial is a
function and returns zero if it fails. If it succeeds advanced users may note the return result is
the location of the IOExtSer structure. The baud rate should be in the range of 110-292,000.
The io_serflags parameter includes the following flags:

bil7: #serf xdisabled=128
bit6: #serf-eofmode=64
bitS: #serf - shared=32
bit4: #serf=:rad_boogie=16
bit3: #serf_queuedbrk=8
bit2: #serf 7wire=4
bit1: #serf::parity_odd=2
bitO: #serf---parity_on=1

;disable xonlxoff
;enable eof checking
;set if you don't need exclusive use of port
;high speed mode
;if set a break command waits for buffer empty
;if set use 7 wire RS232

;select odd parity (even if not set)
;enable parity checking

Statement: WriteS erial
Syntax: WriteSerial unitN,byte

I Blitz User Issue 2 25

Modes: Amiga

Description:

- ------ -------

WriteSerial sends one byte to the serial port. Unit# defines which serial port is used. If you
are sending characters use the AscO function to convert the character to a byte e.g.
WriteSerial O,asc("b").

Statement WriteSerialString
Syntax: WriteSerialString unit#,string

Modes: Amiga

Description:

WriteSerialString is similar to WriteSerial but sends a complete string to the serial port.

Function: ReadSerial
Syntax: ReadSerlal (unit#) returns -1 if nothing waiting

Modes: Amlga

Description:

ReadSerlal returns the next byte waiting in the serial port's read buffer. If the buffer is
empty it returns a -1. It is best to use a word type (var.w=ReadSerial(O)) as a byte will not be
able to differentiate between -1 and 255.

Function: ReadSerialString
Syntax: ReadSerialString (unit#) returns null if nothing waiting

Modes: Amiga

Description:

ReadSerialString puts the serial port's read buffer into a string, if the buffer is empty the
function will return a null string (length=O).

Statement: CloseS erial
Syntax: CloseSerial unit#

Modes: Amiga

Description:

The CloseSerlal command will close the port, enabling other programs to use it. Note: Blitz
will automatically close all ports that are opened when a program ends.

26 Blitz User Issue 2 I

Statement SetSeriaIBuffer
Syntax: SetSerialBuffer unitH,bufferlength

Modes: Amiga

Description:

SetSerialBuffer changes the size of the ports read buffer. This may be useful if your program
is not always handling serial port data or is receiving and processing large chunks of data. The
smallest size for the internal serial port (unit#O) is 64 bytes. The bufferlength variable is in bytes.

Statement: SetSerialLens
Syntax: SetSerialLens unitH,readlen,writelen,stopbits

Modes: Amiga

Description:

SetSerialLens allows you to change the size of characters read and written by the serial
device. Generally readlen=writelen and should be set to either 7 or 8, stop bits should be set to 1
or 2. Default values are 8,8,1.

Statement: SetSeriaIParams
Syntax: SetSerialParams unitH

Modes:'Amiga

Description:

For advanced users, SetSerialParams tells the serial port when parameters are changed. This
would only be necesary if they were changed by poking offsets from IOExtSer which is returned
by the OpenSerial command.

Function: SeriaIEvent
Syntax: Serial Event (unitH)

Modes: Amiga

Description:

SerialEvent is used when your program is handling events from more than 1 source, Windows,
ARexx etc.

This command is currently not implemented

I Blitz User Issue 2 27

AREXX COMMANDS

Function: CreateMsgPortO
SYNTAX: PortAddress.1 = CreateMsgPort(HName")

MODES:AMIGA

DESCRIPTION:

CreateMsgPort is a general Function and not specific to ARexx.

CreateMsgPort opens an intuition PUBLIC message port of the name supplied as the only
argument. If all is well the address of the port created will be returned to you as a LONGWORD
so the variable that you assign it to should be of type long.

If you do not supply a name then a private MsgPort will be opened for you .

. Port.l=CreateMsgPort("PortName")

It is important that you check y.0u actually succeeded in opening a port in your program. The
following code or something similar will suffice.

Port .I=CreateMsgPort('Name ")
IF Port=O THEN Error_RoutineO

The name you give your port will be the name that Arexx looks for as the HOST address.(and
is case sensitive) so take this into consideration when you open your port. NOTE IT MUST BE
A UNIQUE NAME AND SHOULD NOT INCLUDE SPACES.

DeleteMsgPortO is used to remove the port later but this is not entirely necessary as Blitz2
will clean up for you on exit if need be.

Statement: DeleteMsgPortO
STATEMENT: DeleteMsgPort

SYNTAX: DeleteMsgPort Port

MODES:AMIGA

DESCRIPTION:

DeleteMsgPort deletes a MessagePort previously allocated with CreateMsgPortO.; The only
argument taken by DeleteMsgPort is the address returned by CreateMsgPortO. If the Port
was a public port then it will be removed from the public port list.

Port.I=CreateMsgPort("Name")
IF Port=O Then End
DeleteMsgPort Port

Error checking is not critical as if this fails we have SERIOUS PROBLEMS.

YOU MUST WAIT FOR ALL MESSAGES FROM AREXX TO BE RECEIVED BEFORE YOU
DELETE THE MSGPORT. IF YOU NEGLECT TO DELETE A MSGPORT BLlTZ2 WILL DO IT
FOR YOU AUTOMATICALLY ON PROGRAM EXIT.

28 Blitz User Issue 2 I

Function: CreateRexxMsgO
SYNTAX: msg.l=CreateRexxMsg(ReplyPort, "exten", "HOST,,)

MODES:AMIGA

DESCRIPTION:

CreateRexxMsg() allocates a special Message structure used to communicate with Arexx. If
all is successful it returns the LONGWORD address of this rexxmsg structure.

The arguments are ReplyPort which is the long address returned by CreateMsgPortO. This is
the Port that ARexx will reply to after it has finished with the message.

EXTEN which is the exten name used by any ARexx script you are wishing to run. i.e. if you
are attempting to run the ARexx script test.rexx you would use an EXTEN of ·rexx·.

HOST is the name string of the HOST port. Your program is usually the HOST and so this
equates to the name you gave your port in CreateMsgPort(). REMEMBER IT IS CASE
SENSITIVE.

As we are allocating resources error checking is important and can be achieved with the
following code:

msg.l=CreateRexxMsg(Port ,'rexx' ,'HostName')
IF msg=O THEN ErrocRoutinell

Statement: DeleteRexxMsg
SYNTAX: DeleteRexxMsg rexxmsg

MODES:AMIGA

DESCRIPTION:

DeleteRexxMsg simply deletes a RexxMsg Structure previously allocated by
CreateRexxMsg(). It takes a single argument which is the long address of a RexxMsg structure
such as'returned by CreateRexxMsgO.

msg.I=CreateRexxMsg(Port ,'rexx' . 'HostName")
IF msg=O THEN ErrocRoutinel1
DeleteRexxMsg msg

Again if you neglect to delete the RexxMsg structure Blitz2 will do this for you on exit of the
program.

Statement: ClearRexxMsg
SYNTAX: CiearRexxMsg1k

MODES:AMIGA

DESCRIPTION:

ClearRexxMsg is used to delete and clear an ArgString from one ormore of the Argument slots
in a RexxMsg Structure. This is most useful for the more advanced programmer wishing to take

I Blitz User Issue 2 29

advantage of the Arexx #RXFUNC abilities.

The arguments are a LONGWORD address of a RexxMsg structure. ClearRexxMsg will
always work from slot number 1 forward to 16.

Port .1=CreateMsgPort("T est Port")
If Port = NULL Then End
msg.I=CreateRexxMsg(Port ,"vc" :TestPort")
If msg=NULL Then End
SendRexxCommand msg:open" ,/RXCOMM I IRXFF _RESULT
wait:WHILE GetMsg_(Port) <> msg:Wend ;Wait for reply to come
ClearRexxMsg msg ;Delete the Command string we sent

NOTE: ClearRexxMsgO is called automatically by RexxEventO so the need to call this yourself
is removed unless you have not sent the RexxMsg to Arexx.

Statement: FillRexxMsgO
SYNTAX: FiIIRexxMsg rexxmsg,&FiIIStruct

MODES:AMIGA

DESCRIPTION:

FiIIRexxMsg allows you to fill all 16 ARGSlots if necessary with either ArgStrings or numerical
values depending on your requirement.

FiIIRexxMsg will only be used by those programmers wishin~ to do more advanced things
with Arexx, including adding libraries to the ARexx library list, adding Hosts,Value Tokells etc. It
is also needed to access Arexx using the #RXFUNC flag. .

The arguments are a LONG Pointer to a rexxmsg.

The LONG address of a FiIIStruct NEWTYPE structure. This structure is defined in the
Arexx.res and has the following form.

NEWTYPE.FiIIStruct
Flags.w ;Flag block
ArgsO.l ; argument block (ARGO-ARG 15)
Args 1.1 ; argument block (ARGO-ARG 15)
Args2.1 ; argument block (ARGD-ARG 15)
Args3.1 ; argument block (ARGO-ARG 15)
Args4.1 ; argument block (ARGO-ARG 15)
ArgsS.1 ; argument block (ARGG-ARG 15)
Args6.1 ; argument block (ARGO-ARG 15)
Args7.1 : argument block (ARGO-ARG 15)
Args8.1 : argument block (ARGO-ARG 15)
Args9.1 : argument block (ARGO-ARG 15)
Args10.1 : argument block (ARGO-ARG 15)
Args 11.1 : argument block (ARGD-ARG 15)
Args 12.1 : argument block (ARGO-ARG 15)
Args 13.1 ; argument block (ARGO-ARG 15)
Args14.1 ; argument block (ARGO-ARGI5)
Args 15.1 : argument block (ARGO-ARG 15)
EndMark.1 ;End of the Fi//Struct

End NEWTYPE

The Args?.1 are the 16 slots that can possibly be filled ready for converting into the RexxMsg
structure. The Flags.w is a WORD value representing the type of LONG word you are supplying

30 Blitz User Issue 2 I

for each ARGSLOT (Arg?.I).

Each bitin the Flags WORD is representative of a single Args?.I, where a set bit represents a
numerical value to be passed and a clear bit represents a string argument to be converted into a
ArgString before installing in the RexxMsg. The Flags Value is easiest to supply as a binary
number to make the bits visible and

would loOk like this.

%0000000000000000 ;This represents that all Arguments are Strings.

%0110000000000000 ;This represent the second and third as being integers.

FiIIRexxMsg eXp'ects to find the address of any strings in the Args?.I slots so it is important to
remember when flllin~ a FiliStruct that you must pass the string address and not the name of the
string. This is acorn ph shed using the '& address of operand.

So to use FiIIRexxMsg we must do the following things in our program:

1. Allocate a FiliStruct
2. Set the flags in the FiIIStruct\Flags.w
3. Fill the FiIIStruct with either integer values or the

addresses of our string arguments.
4. Call FiIIRexxMsg with the LONG address of our rexxmsg and the

LONG address of our FiIIStruct.

To accomplish this takes the following code:

;Allocate our FiliStruct (called F)

DEFTVPE.FiIIStruct F

;assign some string arguments

T$="open":T 1 $='0123456789'

;Flllin our FIllStruct with flags and (&) addresses of our strings

F\ Flags= %00 1 0000000000000 ,& T$,& T 1 $.4

;Third argument here Is an Integer (4).

Port .1=CreateMsgPort('host')
msg.I=CreateRexxMsg(Port :vc', "host')

FiIIRexxMsg msg,&F

;<-3 args see IRXFUNC

SendRexxCommand msg,",/RXFUNC I IRXFF _RESULT 13

Function: CreateArgStringO
SYNTAX: ArgString.l=CreateArgString('this is a string')

MODES:AMIGA

DESCRIPTION:

CreateArgStringO builds an ARexx compatible ArgString structure around the provided string.

I Blitz User Issue 2 31

All strings sent to, or received from Arexx are in the form of ArgStrings. See the TYPE
RexxARG.

If all is well the return will be a LONG address of the Ar!;lString structure. The pointer will
actually point to the NULL terminated String with the remainder of the structure available at
negative offsets.

arg.l=CreateArgString("this is a string")
IF arg=O THEN Error_Routinell:ENDIF

DeleteArgString arg

NOTE: An ArgString maybe used as a normal BB2 string variable by simple conversion
using PEEKS

I.e. msgS=PEEK$(arg) or perhaps NPRINT PEEKS(arg)

NOTE: Most of the BB2 Arexx Functions call this themselves and there will be only limited
need for you to access this function.

Statement: DeleteArgString
SYNT AX:DeleteArgString ArgString

MODES:AMIGA

DESCRIPTION:

DeleteArgString is designed to Delete ArgStrings allocated by either Blitz2 or ARexx in a
system friendly way. It takes only one argument the LONGWORD address of an ArgString as
returned by CreateArgString().

arg.l=CreateArgString("this is a string")
IF arg=O THEN Error_Routlnell:ENDIF

DeleteArgString arg

NOTE: This function is also called automatically by most of the BB2 Arexx Functions tha, need
it so you should only need to call this on rare occations.

Statement: SendRexxCommand
SYNTAX: SendRexxCommand rexxmsg, 'commandstring",#RXCOMMI #RXFF_RESUL T

MODES:AMIGA

DESCRIPTION:

SendRexxCommand is designed to fill and send a RexxMsg structure to ARexx inorder to
get ARexx to do something on your behalf.

The arguments are as follows;

rexxmsg is the LONGWORD address of a RexxMsg structure as returned by
CreateRexxMsgO·

commandstring is the command string you wish to send to ARexx. This is a string as in "this
is a string" and will vary depending on what you wish to do with ARexx. Normally this will be
the name of an ARexx script file you wish to execute. ARexx will then look for the script by the
name as well as the name with the exten added.(this is the exten you used when you created

32 Blitz User Issue 2 I

the RexxMsg structure using CreateRexxMsg()). This could also be a string file. That is a complete ARexx script in
a single line.

ActionCodes are the flag values you use to teU ARexx what you want it to do with the
commandstring you have supplied. The possible flags are as follows;

COMMAND (ACTION) CODES

The command codes that are currently implemented in the resident process are described
below. Commands are listed by their mnemonic codes,followed by the valid modifier flags. The
final code value is always the logical OR of the code value and all of the modifier flags selected.
The command code is installed in the rm_Action field of the message packet.

USAGE: RXADDCON

This code specifies an entry to be added to the Clip list. Parameter slot ARGO points to the
name string,slot ARG1 pOints to the value string, and slot ARG2 contains the length of the value
string. •

The name and value arguments do not need to be argstrings,but can be just pointers to storage
areas. The name should be a nUll-terminated string,but the value can contain arbitrary data
including nulls.

USAGE: RXADDFH

This action code specifies a function host to be added to the library List. Parameter slot ARGO
points td the (null-terminated) host name string,and slot ARG1 holds the search priority for the
node. Tl;1e search priority should be an integer between 100 and -100 inclusive;the remaining
priority ranges are reserved for future extensions. If a node already exists with the same name,the
packet is returned with a warning level error code.

Note that no test is made at this time as to whether the host port exists.

USAGE:,RXADDLIB

This code specifies an entry to be added to the Library List. Parameter slot ARGO points to a
null-terminated name string referring either to a function library or a function host. Slot ARG1 is the
priority for the node and $hould be an integer between 100 and -100 inclusive;the remaining
priOrity r~nges are reserved for future extensions. Slot ARG2 contains the entry Point offset and
slot ARG3 is the library version number. If a node already exists with the same name,the packet is
returned with a warning level error code. Otherwise,a new entry is added and the library or host
becomes available to ARexx programs. Note that no test is made at this time as to whether the
library exists and can be opened.

USAGE:RXCOMM [RXFF _TOKEN] [RXFF _STRING] [RXFF _RESULT] [RXFF _NOlO]

SpeCifies a command-mode invocation of an ARexx program. Parameter slot ARGO must
contain an argstring Pointer to the command string. The RXFB_TOKEN flag specifies that the
command line is to be tokenized before being passed to the invoked program. The RXFB_STRING
flag bit indicates that the command string is a ·string file.· Command invocations do not normally
return result strings,but the RXFB_RESUL T flag can be set if the caller is prepared to handle the
cleanup associated with a returned string. The RXFB_NOIO modifier suppresses the inheritance of
the host's input and output streams.

USAGE:RXFUNC [RXFF _RESULT] [RXFF _STRING] [RXFF _NOlO] argcount

This command code specifies a function invoction. Parameter slot ARGO contains a pOinter to
the function name string, and slots ARG1 through ARG15 pOint to the argument strings,all of which
must be passed as argstrings. The lower byte of the command code is the argument count;this
count excludes the function name string itself. Function calls normally set the RXFB_RESUL T
flag,but this is not mandatory. The RXFB_STRING modifier indicates that the function name string

I Blitz User Issue 2 33

is actually a 'string file". The RXFB_NOIO modifier suppresses the inheritance of the
host's Input and output streams.

USAGE:RXREMCON

This code requests that an entry be removed from the Clip List. Parameter slot ARGO points
to the null-terminated name to be removed. The Clip List is searched for a node matching the
supplied name,and if a match is found the list node is removed and recycled. If no match is
found the packet is returned with a warning error code.

USAGE:RXREMLIB

This command removes a Library List entry. Parameter slot ARGO points to the null
terminated string specifying the library to be removed. The Library List is searched for a node
matching the library name,and if a match is found the node is removed and released. If no match
is found the packet is returned with a warning error code. The libary node will not be removed if
the library is currently being used by an ARexx program.

USAGE:RXTCCLS

This code requests that the global tracing console be closed. The console window will be
closed immediately unless one or more ARexx programs are waiting for input from the console.
In this event,the window will be closed as soon as the active programs are no longer using it.

USAGE:RXTCOPN

This command requests that the global tracing console be opened. Once the console is
open,all active ARexx programs will divert their tracing output to the console. Tracing input(for
interactive debugging)will also be diverted to the new console. Only one console can be
opened;subsequent RXTCOPN requests will be returned with a warning error message.

MODIFIER FLAGS

Command codes may include modifier flags to select various processing options. Modifier
flags are specific to certain commands, and are ignored otherwise. .

RXFF_NOIO.

This modifier is used with the RXCOMM and RXFUNC command codes to suppress the
automatic inheritance of the host's input and output streams.

RXFF _NONRET.

Specifies that the message packet is to be recycled by the resident process rather than being
returned to the sender. This implies tht the sender doesn't care about whether the requested
action succeeded,since the returned packet provides the only means of acknowledgement.
(RXFF _NONRET MUST NOT BE USED AT ANY TIME)

RXFF _RESULT.

This modifer is valid with the RXCOMM and RXFUNC commands,and requests that the called
program return a result string. If the program EXITs(or RETURNs)with an expression,the
expression result is returned to the caller as an argstring. This ArgString then becomes the
callers responsibility to release. This is automatically accomplished by using GetResultStringO. It
is therefore imperitive that if you use RXFF _RESULT then you must use GetResultStringO when
the message packet is returned to you or you will incure a memory loss equal to the size of the
ArgString Structure.

RXFF _STRING.

This modifer is valid with the RXCOMM and RXFUNC command codes. It indicates that the

34 Blitz User Issue 2 I

command or function argument(in slot ARGO)is a "string file" rather than a file name.

RXFF _TO~EN.

This flag is used with the RXCOMM code to request that the command string be completely
tokenized before being passed to the invoked program. Programs invoked as commands normally
have only a single argument string. The tokenization process uses "white space" to separate the
tokens,except within quoted strings. Quoted strings can use either sin~le or double quotes,and the
end of the command string(a null character) is considered as an implicit closing quote.

EXAMPLES:

Port .I=Op~nRexxPorl("l estPort")
If Port =NULL End:Endlf

msg.I=CreateRexxMsg(Port. "vc" .'TestPort')
If msg=NULL End:Endlf

SendRexxCommand msg:open'.IRXCOMM I IRXFF _RESULT

Statement: ReplyRexxMsg
SYNTAX; ReplyRexxMsg rexxmsg,Result1,Result2, "ResuItString"

MODES:AMIGA

DESCRIPTION:
I .

When ARexx sends you:a RexxMsg (Other than a reply to yours i.e. sending yours back to you
with results) you must repl to the message before ARexx will continue or free that memory
associated with that RexxMsg. ReplyRexxMsg accomplishes this for you. ReplyRexxMsg also will
only reply to message that requires a reply so you do not have to include message checking
routines In your source simply call ReplyRexxMsg on every message you receive wether it is a
comman«;l or not.

The arguments are;

rexxmsg Is the LONGWORD address of the RexxMsg Arexx sent you as returned by
GetMsg_(Port).

Result1 is 0 or a severity value if there was an error.

Result2 is 0 or an Arexx error number if there was an error processing the command that was
contained in the message.

ResultString is the result string to be sent back to Arexx. This will only be sent if Arexx requested
one and Result1 and 2 are O.

ReplyRexxMsg rexxmsg,O,O,"THE RETURNED MESSAGE"

Function: GetRexxResuItO
SYNTAX: Result.l=GetRexxResult(rexxmsg,ResultNum)

MODES:AMIGA

DESCRIPTION:

I Blitz User Issue 2 35

GetRexxResult extracts either of the two result numbers from the RexxMsg structure. Care
must be taken with this Function to ascertain wether you are dealing with error codes or a
ResultString address. Basically if result 1 is zero then result 2 will either be zero or contain a
ArgString pOinter to the ResultString. This should then be obtained using GetResultString().

The arguments to GetRexxResult are;

rexxmsg is the LONGWORD address of a RexxMsg structure returned from ARexx.

ResultNum is either 1 or 2 depending on wether you wish to check result 1 or result 2.

;print the severity code if there was an error

NPrint GetRexxResult(msg,1)

;check for ResultString and get it if there ;s one

IF GetRexxResult(msg,1)=0
IF GetRexxResult(msg,2) THEN GetResultStrlng(msg)

ENDIF

Function: GetRexxCommandO
SYNTAX: String$=GetRexxCommand(msg,1)

MODES:AMIGA

DESCRIPTION:

GetRexxCommand allows you access to all 16 ArgStrlng slots in the given RexxMsg. Slot 1
contains the command string sent by ARexx in a command message so this allows you to
extract the Command.

Arguments are:

rexxmsg is a LONGWORD address of the RexxMsg structure as returned by RexxEvent()

ARGNum is an integer from 1 to 16 specifying the ArgStrlng Slot you wish to get an ArgString
from. .

BEWARE YOU MUST KNOW THAT THERE IS AN ARGSTRING THERE.

Function: GetResultStringO
SYNTAX: String$=GetResuItString(rexxmsg)

MODES:AMIGA

DESCRIPTION:

GetResultString allows you to extract the result string returned to you by ARexx after it has
completed the action you requested. ARexx will only send back a result string if you asked for
one (using the ActionCodes) and the requested action was successful.

36 Blitz User Issue 2 I

;check for ResultString and get it if there is one

IF GetRexxResult(msg, 1)=0
IF GetRexxResult(msg,2) THEN GetResultString(msg)

ENDIF

NOTE: Do not attempt to DeleteArgString the result string returned by this function as the return is
a string and not an ArgString pointer. BB2 will automatically delete this argstring for you.

Statement: Wait
SYNTAX: Wait

MODES:AMIGA

DESCRIPTION:

Wait halts all program execution until an event occurs that the program is interested in. Any
intuition event such as clicking on a gadget in a window will start program execution again.

A message arriving at a MsgPort will also start program execution again. So you may use Wait
to wait f~r input from any source including messages from ARexx to your program.

Wait should always be paired with EVENT if you need to consider intuition events in your event
handler loop.

Repeat
Wail:rmsg.I=REXXEVENT(Port):ev.l=EVENT
IF IsRexxMsg(Rmsg) Process_Rexx_Messogesll:ENDIF

:'Rest of normal intuition event loop statements case etc

Until ev ::$200

Function: RexxEventO
SYNTAX: Rmsg.l=RexxEvent(Port)

MODES:AMIGA

DESCRIPTION:

RexxEvent is our Arexx Equivalent of EVENT(). It's purpose is to check the given Port to see if
there is a message waiting there for us.

n should be called after a WAIT and will either return a NULL to us if there was no message or
the LONG address of a RexxMsg Structure if there was a message waiting.

Multiple Arexx MsgPorts can be handled using separate calls to RexxEventO:

Woit:Rmsg 1.I=RexxEvent(Portl):Rmsg2.I=RexxEvenl(Port2):etc

RexxEvent also takes care of automatically clearing the rexxmsg if it is our message being
returned to. us.

The argument is the LONG address of a MsgPort as returned by CreateMsgPortO.

I Blitz User Issue 2 37

EXAMPLES:

Repeat
Walt:Rmsg.l=REXXEVENT(Port):ev.I=EVENT
IF IsRexxMsg(Rmsg) Process_RelocMessages{\:ENDIF

Rest of normal intuition event loop statements case etc
Until ev =$200

SEE ALSO: WaitO,CreateMsgPortO

Function: IsRexxMsgO
SYNTAX: IsRexxMsg(rexxmsg)

MODES:AMIGA

DESCRIPTION:

IsRexxMsg tests the argument (a LONGWORD pointer hopefully to a message packet) to see
if it is a RexxMsg Packet. If it is TRUE is returned (1) or FALSE if it Is not (0).

repeat
Walt:Rmsg.I=REXXEVENT:ev.I=EVENT
IF IsRexxMsg(Rmsg) Process_Rexx_Messagesl}:ENDIF

Rest of normal intuition event loop statements case etc
until ev =$200

As the test is non destructive and extensive passing a NULL value or a LONGWORD that
does not point to a Message structure (Intuition or Arexx) will safely return as FALSE.

SEE ALSO: CreateRexxMsgO,GetMsgj)

Function: RexxErrorO
SYNTAX: ErrorString$=RexxError (ErrorCode)

MODES:AMIGA

DESCRIPTION:

RexxError converts a numerical error code such as you would get from
GetRexxResult(msg,2) into an understandable string error message. If the ErrorCode is not
known to ARexx a string stating so is returned this ensures that this function will always
succeed.

NPRINT RexxError(5)

SEE ALSO: GetRexxResultO

38 Blitz User Issue 2 1

SIMON'S 3D LIBRARY
The following are pre-release docs for the 3D library featured on the cover disk.

Statement: InitDisplay3D
Syntax: InitDisplay3D Display3D#,BitMapO#,BitMap1#,f1ags,xview%,yview%,[,x,y,w,h)

Modes: AmigalBlitz

Description:

InitDisplay3D initialises a display system for the 3d library. A 3d display can either be
the size of the bitmap specified, or by adding the optional parameters a window in the
bitmap.

Windows must be located on a 16 bit boundary and be a multiple of 16 pixels wide.

The two BitMaps supplied must be the same size, if double buffering is not required
BitMap 1 # can be the same as BitMap#O.

The flags parameter contains the following bits:

#STEREO=1 Configure a stereoscopic display, bitmaps supplied must be twice the
height of the display, the 3d library then renders the left eye image in the top half and the
right :eye image in the lower half when DrawScene3D is called

#LUT =2 Add look up table to the Display3D object, this takes 32K of memory, speeds up
the projection algorithm used by Drawscene3D, however rendering is not as aCCurate as a
display with no lut.

Thtl field of vision is defined by xview% and yview%. 50% will display 90 degrees in front
of the viewer, 40% will display 72 degrees (recomended).

Statement: FreeDisplay3D
Syntax: FreeDisplay3D Display3D#

Modes: AmigalBlitz

Description:

FreeDisplay3D will free the memory allocated by the Display3D#. 3D displays are
automatically freed when the program ends.

Statement: Horizon3D
Syntax: Horizon3D GroundColor,SkyColor

Modes: AmigalBlitz

I Blitz User Issue 2 39

Description:

The Horizon3D command is used to configure a horizon for use by the 3D library and
define the colors from the current palette that are used for ground and sky. If
GroundColor=O no horizon is drawn by DrawScene3D. GroundColor must be an odd
number and SkyColor must be even.

Statement: DrawScene3D
Syntax: DrawScene3D Dispfay3D#,Buffer#,ShapeList() ;camera=current item

Modes: AmlgaiBlitz

Description:

DrawScene3D is used to render the 3D scene onto the specified 3D display. Buffer# can
be either 0 or 1 and relates directly to the bitmaps that were specified when the Display3D
was initialised.

The ShapeList() should be a list of .part3D's. The current item in the list will be used as
the viewer and it's position and orientation are used to calculate the other objects position
In the sce~e. The current Item should be thought of as the camera.

Statement: SetStereo3D
Syntax: S~tStereo3D Dispfay3D#,focal distance,separation

Modes: AmigaiBlitz

Description:

If the Display3D is configured with #STEREO set in flags the SetStere03D command is
used to adjust the focal distance and separation amount. The focal length is the distance
from the viewer an objects left and right ~ye image will be In the same place, the
separation variable defines how much the two images will diverge as the object becomes
closer or further away.

Statement: MoveShapes3d
Syntax: MoveShapes3d ShapeListO

Modes: AmigaiBlitz

Description:

The MoveShapes3D command will process all the shapes in the Shapelist(} provided,
the anim[n) varaiables define how the objects are moved as well as the spe~d and
acceleration variables. All children of the shapes in the list are moved as well. .

40 Blitz User Issue 2 J

THE 3D SHAPE STRUCTURE
The .part3D type is used to hold information about each object in the 3D universe. A list

array of shapes is created, and the commands DrawScene3D and MoveShapes3D
process the entire list when they are called, this is much faster than calling the routines for
each object.

The .part3D type:

NEWTYPE .xyz:x.q:y:z:End NEWTYPE

NEWTYPE .matrix:m.w[9):End NEWTYPE

NEWrYPE .part3d
'sister.part3d
'child.part3d
'parent.part3d
'frame.w
rota>xyz: rotv: rot
posa.xyz:posv:pos
Id.rrlatnx
veejJos.w[3]
view. matrix
animval.w[16)

End NEWTYPE

The first 3 pointers are used for linking shapes together. This should be tackled only
whert the programmer is familiar with all the other features of Blitz3D. Briefly, if a shape
has a rotating radar on its roof, the radar would be defined outside the main shape list,
'child would point to the separate radar shape, and its 'parent would pOint back to the
shapes location. The position and orientation of the radar is then calculated relative to the
pareAt shape. More details will be published in the next issue.

Thj:l 'frame field should point to the object's shape (see next section).

The rota, rotv and rot triplets represent the objects rotation (orientation), rotv represents
the rotational velocity and rota it's acceleration.

The posa, posv and pos triplets represent the objects position posv represents its
velocity and posa its acceleration.

The id.matrix is used internally and holds the transformation matrix for the shape, this is
calculated from it's rot value.

The veepos and view.matrix are used internally and hold the shapes relative position &
orientation to the viewer.

The animvals contain information for the MoveShapes3D routine. If animval[O) is
negative the value is calculated by 2A parameter this means the algorithm uses shifts not
multiplies which is much faster.

animval[O) O=stationary object, positive=constants, negative=shifts
animval[1) thrust, fraction of z heading added to shapes acceleration each move
animval[2) drag, fraction of speed subtracted from objects speed each move
animval[3) rotddrag, fraction of rotational speed subtracted each move

The drag variables mean that you can limit the maximum amount of velocity an object

I Blitz User Issue 2 41

reaches when it is constantly accelerating.

3D FRAME STRUCTURE
The ·frame field in the shape must point to a valid frame. this is a collection of verticies

and polygon descriptions that describe what the shape looks like.

Depending on the size of the shape you will want to adjust inveiw so it disappears from
sight when it is so far from the camera. and tooclose so the 3D library does not try and
draw it when some verticies may be behind you. Sorry. no z axis Clipping yet.

Use the shift version for fast verticy generation. normal for the values that are not
exponents of 2. The origin is vO code $00. v1 is calulated at $10. v2 at $20 etc.

The extrude lists have not been extensively tested. more explanations next issue.
however they will save lots of time for verticy generation.

The polygons are described by number of verticies. flags then verticy codes: $OO=origin.
$10 first verticy generated in list...

The color is defined in cO-c3. these 4 bytes directly relate to the colors used in a 2x2
dithering matrix. Keep cO-c3 the same for a solid color. a mix of two colors should be'listed
as coO.c01.c01.coO and a mix of 4 colors listed in any order. The variables to and f1 will be
for planepick. transparency. shading surface detail which I will endeavour to add for next
Issue along with spheres.

The whole frame format is specified as follows:

nxframe.l ;reserved for animating frames
pvframe.l ;reserved for animating frames
inview.w ;distance from camera when out of view
tooclose.w ;distance from camera when too close
type.w ;O=polygons

;verticy list in shift style -3=>-8 -2=>-4 -1=>-1 0=>01=>1 2=>43=>8
numvshifts.w [,x.w.y.w.z.w] ...

;verticy list in normal style
numvnormal,w [x.w.y.w.z.w) ...

;single extrusion of pOint vO in steps of v1 num times
numvrepeats.w [vO.w.v1.w.num.w] ...

;extrude n1 set of points located at vO in direction v1 n2 times
numvextrudes [vO.w.v1.w.n1.w.n2.w] ..

;list polygons in clockwise order
[vnum.w.flags.v.w v.w.cO.b.c1.b.c2.b.c3.b.to.w.f1.w] ..

;end with two zeros.
dc 0.0

Apologies for not covering the 3D library in more depth. the demos on the cover disk
should illustrate most of the concepts. the rest will just have to wait for the next issue of
Blitz User. stay tuned!

42 Blitz User Issue 2 I

LIBRARY
DEVELOPMENT

The following is an extended discussion of topics discussed in chapter 5 of the User
Guide. This is for users with experience in machine code wanting to take advantage of the
powerful Blitz 2 library system. All the constants and macros used are defined in the
libmaFs file found in the bhtzlibs: volume.

A lot of this reference material is complex, we will endeavour to publish examples of
most pf this material in the next issue of BlitzUser. We are confident that the way we have
engineered the Blitz 2 library system will mean Blitz will continue to grow in leaps and
boun9s.

THE LIBRARY HEADER
#mylib=50

iribheader (#mylib,init,1,finit,O)

idumtoke("MyModuleName", "",_toke}
, .
lasta1ement !args (#word,#string)
!libs (#medlib,$1380,#doslib,#la6)
Isubs Uoadmyobject+ 1,O,O}
!name {"LoadMyObject", "MyObject#, FileName$"}

; mo~e statements and functions go here

ioad:lnullsub(O,O,O}
save:!nullsub(O,O,O}
use:!nullsub(O,O,O}
free:lnullsubUreemyobject,O,O}

init: InullsubUnitmylib,O ,O}
finit:!nulisubLclosemylib,O,O}

ilibfinUoke,Joad,_save,_use,_free,8,5}

INIT/FINIT
When Blitz2 first runs a program it calls all the init routines of the libraries required by the

program. Any code to initialise tables and allocate memory for the libraries' routines would
be pOinted to by the init nullsub in this instance a routine called jnitmylib.

The 1 after init in libheader means our init routine returns a long word for use by other
libraries (must be lower priority). This is useful for sharing large tables or a common data
structure between two related libraries.

The finit routine is called when a program ends, it is useful for any clean up procedures,

I Blitz User Issue 2 43

for example the med library uses a finit routine to make sure all audio channels are silent, it
could also be used to make sure specific opened files are closed etc.

ERROR CHECKING
When error checking is enabled Blitz 2 calls any specified error routines before calling

commands. The last parameter of libheader should point to the start of these routines.
When error checking is not enabled Blitz 2 will not load this section of the library saving
memory.

If any commands require an optional error checking routine that is enabled/disabled from
the compiler options the location of the error checking routine should be passed in the
second parameter of the Isubs macro of that command. The error routine should be
located at the end of the library after the errorroutines pOinter in !libheader.

An error routine usually comprises of code that checks parameters are in range, if it fails
the location of a message is placed in register dO followed by a Trap#O instruction which
will bring up the familiar Blitz 2 error requester, if parameter checking succeeds the error
routine should return making sure not to corrupt any vital registers.

LIBRARY OBJECTS
The optional parameters of the !libfin macro are used to define a libraries' own object

type. Examples of Blitz objects are listed in Appendix 1 of the reference manual.

The first parameter of !libfin points to the Idumtoke contining the objects name. This
dumtoke should be positioned directly after !libinit as in the above example. The Load and
Save routines are not implemented and should point to nullsub macros as listed.

The used null sub can point to a routine which will be called when the Use
MyObjectName command is used. An example of this is Use Palette 3, not only does
Palette Object number 3 become the currently used object but is also displayed on the
current Slice or Screen.

The Free nullsub can be used to de-allocate memory that the object used.

The last two parameters of !libfin are the default number of objects that will be allocated
(can be changed by the user in the compiler options requester) and the size of each object.
The size is computed by 21\sizeparameter so the 5 in the above example represents 32
bytes allocated for each object.

OBJECT PARAMETERS
The Blitz 2 library system has a wide range of features in the parameters (arguments)

department.

The !args macro can contain up to 15 argument definitions. To specify an argument use
the constants #byte, #word, #Iong, #quick and #float. Blitz 2 will convert the type the user
passed to the correct type.

The parameters will be passed in registers dO-d5, extra parameters will be passed to
your routine on the stack and can be recovered by move(.I)-(a2),register.

44 Blitz User Issue 2 I

The following argument definitions can sometimes be used in combination, for instance
the sort command uses #array+#arrayend+ #unknown so it can operate on any type of
single dimension array of any type. The array base arrives in dO, an the routine pulls the
array end location of the stack first and then the type.

#string specifies a string argument, the location is passed in the proper register and its
lengthwill be pushed on a stack, recovered by a move.1 -(a2),register. All Blitz strings are
null terminated.

#usesize must be the first parameter definition (if required) and will return the type of
command in register dO. i.e. poke.w returns the constant #word in dO.

#unknown will pass the type of variable the user passed to the routine on the stack and
can be recovered by move.w -(a2),register. The print statement uses this form to evaluate
whaftype each of the paramters passed to it are.

#array will pass the location of the arrayllist base to your routine.

#arrayend will pass the location of the end of the array on the stack, used by the sortO
command to calculate number of items in the array

#push will place the parameter on the stack and not in the relevant data register (useful
for c~lIing C routines).

#varptr returns the location of the variable passed (not its value).

Variable specification of parameters are possible with the !repargs macro. The f6rmat is
similar to the standard !args macro however two parameters are inserted at the start of the
code. first_repeat and size_repeat. Blitz 2 will treat the next argument definitions as usual
until $he first_repeat parameter is reached and then parameter definitions apply to
extraneous parameterS in groups of size_repeat.

The following examples should make things clearer ...
m~routine a.w,b.q [,cn.w ...) => !repargs{2,1,#word,#quick,#word}
mYfoutine a.w [[.t1 n.q,t2.w) ...) => Irepargs{1,2,#word,#quick,#word}

The second example expects a word then any number of pairs of quick,word. Blitz 2 will
pass your routine the number of parameters in register d7.

PROCESSING LISTS
The #array parameter definition also enables the base of a ListArray to be passed to

your routines. The characters 'lisT" ($6c497354) are located at -12(arraybase) if the array
IS a link list. The following code example demonstrates processing the contents of a linked
list, presuming its base is passed in dO

MOVE.I dO,oO ;oO=list base
MOVE.I-28(00),aO ;00 points to first item (-32= 'current item)

nxt: TST.I (00) ; empty node?
BEQ finished ; yes exit
LEA 8(00),01 ;0 1 points to item data
BSR processJtem
MOVE.I (00),00 ;go to next item in list (4(00)= 'previous item)
BRA nxitem

dun:RTS

I Blitz User Issue 2 45

THE LlBS MACRO
Often your routines will require a library base (value returned by that libraries init routine) or
pOinters to library objects (be it your own libraries objects or other libraries).

The following constants are for use in the !libs macro and define what information you
require passed in which register. reg is restricted to dO-d7/aO-a3/a6. A library number
should follow each constant be it your own libraries or another.

#Ireg,libnum load the specific register with libnum's base

#Ipush,libnum push the libnum's base onto the stack

#ureg,libnum loads reg with location of currently used library object

#breg,libnum loads reg with location of base item (item 0)

#mreg,libnum returns the maximum number of objects set in compiler options

#ireg! #preg,libnum loads the ireg with location of object(#preg), #preg being a parameter
passed in args.

Examples:

!libs(#la1,#chipbaselib,#la6,#doslib}

Location $dffOOO Is passed in a1 ,_DosBASE In a6 (ready for dos calls)

!libs(#iaOI #pdO,#shapeslib,#ua1,#bitmaplib}

The location of the shape with number specified by the first argument is passed in aO,
the currently used bitmap IS passed in a1.a

BLlTZlAMIGA MODES
If a 1 is added to the first parameter of a !subs macro Blitz will only let the user use the

command in Amiga mode as in the above example. If a 1 is added to the second
parameter (error routine) then the command is BlitzMode only. Of course any 1 is stripped
by Blitz when it evaluates the labels!

If the command has two routines one for Blitz mode and one for Amiga mode the
following convention should be used at the routines labelled location:

routine: dc.w $00001 ;call blitz 2 line 10/0 emulator
dc.1 blitz_routine

amigo_routine: ;
;amiga version here

rts
blitz_routine:

;blitz version here

rts

If your command uses the blitter the Amiga version of the command should call

46 Blitz User Issue 2 I

Own.:.Blitter, bsr the BlitzMode version then DisOwn_Blitter. Before poking Blitter registers
in yOl,lr routine always do a BlitWait. The following code should be used:

mybllt: dc.w $a001
dc.l _domyblit ;in blitz mode, go straight there
AUbJSR $c203 ;own blitter
bsr _domyblit
ALlbJSR $c204 ;disown blifter
rts

domyblit:

INL.INE CODE
,

PP Relative code can be inserted directly into the object code by the Blitz 2 compiler.
Not~ "the rts is not included in the size of the code. The code must be completely self
contained with no absolute addressing . .
cortlmandlabel : dc SaOOO:f-'s
's

; code goes here (no absolute adressing!)
'f

rts

CALLING OTHER LIBRARIES
t '.

The memory allocate and free routines have already been described in the Libraries
chapter of the User Guide. The following is a list of useful System calls for ~se with the
ALilpsr command (the BLibJsr command is for accessing the BlitzMode version of certain
co",!mands).

AU of the following routines will only alter the registers supplied and preserve all registers
not hsted.

Command: #globalalloc=$c002 (memlib)
Syntax: memoryblock dO.l = globalalloc (bytesize dO.l, memtype d1.1)
Des~ription : Standard memory allocate routine, automatically cleared by Blitz when
program ends, see also globalfree.

Command: #globalfree=$c003 (memlib)
Syntax: 910balfree memorylocation a1.1, bytesize dO.!
Description: Standard memory deallocate routine.

Command: #newlocalmem=$c004 (memlib)
Description: Creates a new local memory node, which will link subsequent calls to
localalloc together, useful for recursive type operations, for advanced users only.

Command: #freelocalmem=$c005 (memlib)
Description: Frees all memory attatched to current local memory node.

Command: #localalloc=$cOOO (memlib)
Syntax: memoryblock dO.l = localalloc (bytesize dO.I, memtype d1 .1)
Description: Local memory allocate routine, for use after newlocalmem call.

Command: #localfree=$c001 (memlib)
Syntax: localfree (memorylocation a1.1, bytesize dO.!)

I Blitz User Issue 2 47

Description: Local memory deallocate routine.

Command: #addanint=$cl00 (ihliib)
Syntax: addanint level+ID+$8000 dO.w, code dlJ
Description:

Adds an interupt at the level specified, low 4 bits of dO should contain interupt level, high
bit must be set, other bits can be used for ID. Interupt code should be pointed to by register
dl .

It is up to the programmer to determine whether ALibJSR of BLibJSR is appropriate by
determining which mode their command is being called in. Amiga mode interupt code
MUST preserve d2-d7/a2-a4 and end with moveq#O,dO, Blitz mode interupts should
preserve registers d5-d7Ia4.

Command: #clranint=$c101 (intlib)
Syntax: erranint level+ID+$8000 dO.w
Description:

Removes the interupt(s) with specified ID from the interupt list.
Reserved Interupt ID's are:
Level 3: $8003-BlitzKeys (strobe)
Level 5: $8005-FadeLib

$8015-Mouse
$8025-TrackerLib
$8035-BlitzKeys (repeat function)

Commands: #goblltz=$c200, #goamlga=$c201, #goqamiga=$c202 (switchlib)
Description: Changes operating mode for compiler and program.

Command!!: #ownblit=$c203, #disownblit=$c204 (switchlib) .
Description: Must be used before and after routines that use the blitter in Amiga mode.

Command:;#progend=$c800 (exitslib)
Description: same as the Blitz command End.

Command: #getffpbase=$c900 (ffplib)
Description: returns library base of mathffp.library in a6.

Commands: #quickmult=$caOO, #longmult=$caOl (imuillib)
Syntax: dO.q=quickmult(dO.q,dl .q) and dOJ=longmult(dO.I,d1.1)
Description: Functions that multiply two quicks and two longs.

Commands: #quiekdiv=$cbOO, #longdiv=$cb01 (Idivlib)
Syntax: dO.q=qulckdiv(dO.q/d1 .q) and dO.l=longdiv(dOJ/d1.1)
Description: Functions that divide two quicks and two longs.

Command: #allocstring=$cf01 (maxslib)
Syntax: string dO.I=alloestring(location of text dO.l, length d1.1)
Description:

A null terminated copy of the string is created, a pOinter to which is returned in DO. This
is mainly used to create copies of string parameters for such things as screen or window
tilies.

Command: #freestring=$cf02 (maxslib)
Description: frees up the string pointed to the register dO.

Commands: #quiektofloat=$d300, #floattoquick=$d301 (floatquicklib)
Syntax: dO.f=qulcktofloat(dO.q) dO.q=floattoquick(dO.f)
Description: Functions to converts between quick and long types.

