SEGAMAG |

NEW SOUTH WALES
MARCH 1989

o
\

SOOEFDO LI
BOVPPB6 6D
e

Registered by Australia Post
Pwblication No. NBGB403 x - $ 4 . 0 0
- »/ : \; z

i '/‘ S

OF FLCERS

President Scott MacDonald (046)668-956
Vice President Rex Chandler (02)872-4256
Treasurer Brian Minett (02)825-3998
Asst. Treasurer Ted Hartley (02)622-2416
Secretary Allan Rodd (02)816-1618

HELP DESK: Scott MacDonald(all hours)
John Carter(750-3271) 7-9pm

MEETINGS: "2ND SUNDAY OF EACH MONTH
NEXT MEETINGS: March 12; April 9; May 14

SERVICING: SCOTT MAC DONALD

HARDWARE: TAWARRI SYSTEMS=SCOTT MACDONALD
COMPUTRONICS=JOHN CARTER

sl
oo e e

LETTER TO THE EDITOR

Looks like everything is going very well since the
downfall earlier in the year.

The meetings are getting much better each time
with more varied and interesting activities. I
like the idea of a timetable being set out for the
day which shows good organisation brought by our
staff.

As for the magazine, I can only say that it is
getting better each time.

May I suggest that you put a letter to the
editor in the beginning of the magazine because
when ever I received the magazine I always looked
forward to reading that section first.

Is there any chance that you could help me with
a game called "Ninga Princess" as I cannot find
all the scrolls which are needed to enter the
temple. Your help would kindly be appreciated.

Well, that concluded what Ii have to say so
keep up the good work!!

Fady Sarkis

EDITORS NOTE: Your request has been passed along
to our games expert for a reply next issue.

AGENDA FOR MARCH MEETING

SUNDAY, MARCH 12, 1989, 10 am to 4 pm,
GLADESVILLE PUBLIC SCHOOL OPP. P.O.

10-11:30 Games, possible comp.

11:30-12:00 Discussion on future computor trends
with Scott

12-1 Lunch

1-1:30 General discussion on future
direction of group

4:00 End of meeting

COMPLIMENTARY TEA, COFFEE OR CORDIAL AT
MEETINGS

4___——”‘—_

CLUB TO EXPAND

The committee decided at a recent meeting to
advertise for owners of other brands of PC's to
join our users group. This move was a result of a
poor response to renew memberships by Sega owners.
To date we have only 40 paid members.

The committee also recognised the fact that
.many members also have a second computer of a
differerent brand and would be interested in
.programs for both machines.

If you have friends with another brand of
computer why not invite them to attend our
meeting--free as a visitor--so we can get an idea
of the interest in adding other brands to our
membership. Many other brands operate on the MSX
system similar to Sega so thare may be some
immediate exchanges possible.

Advertisements have been placed in the
Computors sections of the Sydney Morning
Herald(March 4) and The Trading Post. e

/

|

|
I
1
@
i

REVIEW OF FEBRUARY'S MEETING.

Another excellent discussion from Ted Hartley
took place. This time, the topic was Modems. We
were treated to a thorough introduction to the
use of Modems for logging into Bulletin Boards to
send and recieve messages and to download
programmes. We were then taken through the uses
of Viatel for looking up such vital information
as a report on 'Minerals Futures'. Baud Rates and
ASCII transfer were also explained. Reference was
made to 'The New Hacker's Handbook' by Hugo
Cornwall (ISBN 0-7126-9711-X) which gives
comprehensive information on the use of modems
from first principles. Anyone wishing further
information on modems can write to THE EDITOR and
Ted or another knowledgable person will reply.
The discussion on Basic Programming was postponed
through lack of attendance on the day. Anyone
needing help with a particular programming
concept can always receive assistance by writing
to THE EDITOR or by seeing myself or another of
the office bearers at the meetings. The rest of
the day was devoted to informal discussions and
games playing. The Master System again featured
with some new games getting a good run. THUNDER
BLADE, which features superb arcade style
graphics, is an aerial combat action game using
helicopters, and is recommended. We look forward
to another interesting and successful meeting in
March. j

REX CHANDLER.

VICE-PRESIDENT.

24

CONTRIBUTIONS: Members contributions of letters,
stories and programs are welcomed. Please submit
printed copy ready for publication (SEGAWORD
settings: 55-5-54-66). We can reduce or enlarge
copy or graphics--new cover graphics needed for
the next issue.

FINAL VERSION OF NOUGHTS & CROSSES
(See next page for dissection)

10 REM ’ " NOUGHTS & CROSSES’ TUTORIAL. |
20 CLS:FOR 1=0 TO 1:FOR J=0 TO 16:REM PRINT GRID & NUMBERS.
30 CURSOR 9+J,4+5%1:PRINT »/»
40 NEXT J,1
50 FOR =0 TO 1:FOR J=0 TO 14
60 CURSOR 14+6#1,J:PRINT /™
70 NEXT J,1
80 FOR [=0 TO 2:FOR J=0 TO 2
90 CURSOR 8+6%J,5%1:PRINT J+34[+1
100 NEXT J,1 :
110 CURSOR 4,20: INPUT™; A$:REM ACCEPT A GO & CHECK LEGALITY.
120 A=VAL(AS$)
130 IF LEN(AS$)>1 OR A=0 THEN CURSOR 4,20:PRINT CHRS(21):GOTO 110
140 IF B(A)>0 THEN A=0:GOTO 130
150 FOR 1=0 TO 2:FOR J=0 TO 2:REM WHERE TO PRINT O OR X. |
160 IF A=3x[+J+1 THEN X=11+62J:Y=2+541:B(A)=2+] |
170 NEXT J,1 |
180 IF Z=0 THEN B$="0":Z=1:G0TO 200:REM VHOSE GO VAS IT? |
190 B$="X":2=0
200 CURSOR X,Y:PRINTBS:REM PRINT THE GO ON THE GRID.
210 FOR I=1 TO 3:REM DETECT WINNER.
220 IF B(1)<>0 THEN IF B(I)=B(I+3) AND B(I)-B([+6) THEN ¥=1 |
230 NEXT
240 FOR 10 TO 2
250 IF B(3%1+1)<>0 THEN IF B(3%1+1)=B(3x1+2) AND B(3%1+1)=B(3%1+3) THEN U=l
260 NEXT
270 IF B(1)<>0 THEN IF B(1)=B(5) AND B(1)=B(9) THEN W=1
280 IF B(3)<>0 THEN IF B(3)=B(5) AND B(3)=B(7) THEN =1
290 IF W=1 THEN CURSOR 4,20:PRINT BS;™ WINS™:W=0:GOSUB 430:GOTO 350
300 FOR [=1 TO 9:REM DETECT STALEMATE
310 IF B(I)=0 THEN S-1
320 NEXT
330 IF S=1 THEN $=0:0TO 110
340 CURSOR 4,20:PRINT "STALEMATE™
350 CURSOR 4,18:PRINT "ANOTHER GAME? Y/N":REM SETUP NEXT GAME.
360 AS=INKEYS: [F ASO™Y” AND AS<>™N® THEN 360
370 IF A$="N* THEN CLS:PRINT "BYE™:END
380 FOR 1=0 TO 2:FOR J=0 TO 2:REM BLANK LAST GAME'S GOES.
390 CURSOR 11+6%J,245¢]:PRINT” »
400 NEXT J,1
410 ERASE s
420 CURSOR 4,18:PRINT CHR$(21):A=0:2=0:G0TO 130:REM CLEAR ' ANOTHER GAME®.
430 IF B8="0" THEN OW=0W+1:CURSOR12,22:PRINT 0 =";0W:RETURN:REM PRINT SCORE.
440 XW=XW+1:CURSOR. 21,22:PRINT ™Y =";XW:RETURN

.

SAVE TYPING--ALL PROGRAMS LISTED IN THIS ISSUE
CAN BE COPIED ON YOUR DISCS OR CASSETTES FREE AT
THE MEETING. BRING BLANK DISCS AND SEE REX
CHANDLER AT THE MEETING

o

NOUGHTS & CROSSES TUTORIAL.

This is the dissection of the completed ’Noughts and Crosses’ programme
which has been developed over the last few meetings. The instruction REM has
been used to give pointers to the function of the next few lines. All
programmers should use this because its easy to get lost as programmes get
larger or as time passes. The computer goes to the next line without taking
action whenever it finds REM. The instruction : is used to put separate
instruction on the same line. This is often done for tidyness or speed of
execution, but it is also useful when a group of related instructions need to
be executed after an IF-THEN test. In order to make the dissection easier to
follow, I've simplified some of the formulae and altered the layout slightly
from that previously published.

The follouing variables have been used:-

I and J : Counters on the FOR-TO-NEXT loops.

A : Keyboard input.

A : Value of keyboard input.

B(A) ¢ Array variable which stores the contents of the nine grid
positions.

Xand Y : Grid co-ordinates.

Z : Controls whose go and who owns each grid position.

B$! Prints O or X on screen.

v : Winner.

S : Stalemate,

O0W and X¥ : O and X’s score.

LINES 20-40: Two 'nested’ FOR-TO-NEXT loops are used to print the
horizontal lines of the grid. The formula uses the loop counters to calculate
the cursor positions, ie (9,4),(10,4),(11,4) etc and (9,9),(10,9),(11,9) etc.

LINES 50-70: The process is repeated with a sligtly different formula for
the vertical lines,

LINES 80-100: The formulae used in these loops count from 1 to 9, and
calculates the position to print each grid number, again using the loop
counters, ;

LINE 110: The INPUT command is used so that the programme waits for the
player to type and enter the *go’. The ™ (null string) follows INPUT so that
no message is displayed before the cursor. The entry is recorded in the
variable A%. A string variable (which treats all entries as symbols with no
numerical value, even if it represents a number) was chosen so that illegal
entries could be detected more easily. If the variable 'A’' had been used
directly, entry of a letter would have caused the INPUT command to ask for a
new entry and would have scrolled our carefolly prepared screen by one line.

LINES 120-130: Ine entry Ad is converted to tne vaiue a, and Lis
legality is tested. Only values from 1 to 9 are permitted. Therefore the
length of AS must be 1. Similarly, if text was entered, the value of A is 0.
Accordingly, if the IF-THEN test is true, the remainder of the line is
executed and entries longer than one, and text entries are disallowed. The
cursor is returned to the correct position and the control code 'PRINT
CHR$(21)’ is used to clear the line after the cursor. We then GOTO 110 in
order to accept a new entry.

LINE 140: The array variable B(A) stores the values in each of the nine
grid positions. The variable A can only be a number from 1 to 9 (see above).
Therefore B(A) can only be B(1) through to B(39), depending on the last legal
entry from the keyboard. The term ’Array Variable' comes to us from
mathematics. When a programme is run, all variables are set at 0.
accordingly, B(A) will be 0 unless we have changed it, ie if no-one has
entered a go in that square. If B(A) for that square was previously altered,
we return for a new entry. The device used to achieve this goal is to let A=0
and GOTO 130 so that the IF-THEN test in that line is true.

LINES 150-170: The first formula in the loops counts from 1 to 9 and
uses an IF-THEN test to see if the entry matches. When the test is true, the
second formula calculates X and Y (the x and y co-ordinates of the square on
the grid), and gives the square described by 'B(A)’ a value of Z+1. Z is the
variable used to determine whose go it is. If 2=0, it is 0's go and if Z<1,
it is X's go. On start-up, 2=0 and it is always 0's go first. If B(A)=0, it
means the square is not used yet. Accordingly, letting B(A)=Z+l means that if
B(3)=1, square 3 belongs to 0, and if B(7)=2, square 7 belongs to X, etc.

LINES 180-200: If it was 0’s go, (Z=0), B$ becomes *0', we let Z=1 so
that the next go is X's, and GOTO 200. If the test was false, the reverse
happens. Either way, a '0' or a 'X’ is printed at X,Y (the x and y
co-ordinates determined earlier).

LINES 210-280: This section checks for winners and lets W=1 if three in
a row values of B(A) are the same and not zero. Lines 210-230 check
horizontally, 240-260 check vertically, and 270-280 check the diagonals.

LINE 290: If there was a winner (W=1) the current B$ which relates to
the last go, is printed followed by the word “WINS™ and W is reset to 0 in
case there is another game. The GOSUB to line 430 keeps score. If O was the
winner, the variable OW is increased by one, and likewise the variable XW for
X. The winner and score are printed at the selected screen positions and the
programme RETURNs to the command following the GOSUB (in this case GOTO 350
which sets up another game).

LINES 300-330: This section detects a stalemate by looking for unused
squares and letting the variable S=1 if at least one is found. If one was
found, the variable S is reset to 0, and the programme goes back for a new

INPUT. If not, the word STALEMATE is printed and the programme continues onto
Line 350. -

LINES 350-370: This section asks whether a new game is to be set up,
using the INKEYS command. This differs from the INPUT command used earlier
because the programme only checks the keyboard once before moving on. To
overcome this, Line 360 is a loop which will only permit an &xit if the »Y”
or” "N buttons are pushed. The button pushed is not displayed on the screen,
and there is no need to press CR or do error checking for incorrect keys. If
"N* is pushed, screen is cleared and the programme is broken using the
command END. If Y is pushed, the programme continues on to Line 380. '

LINES 380-410: The 0’s and X's on the grid from the previous game are
removed by printing a space over each one. This is done using the nested :
loop. The values in the array variable B(A) which controls who owns each
square, are all set to zero using the command ERASE. This command sets the
value of all array variables to zero.

LINE 420: This line removes the message “ANOTHER GAME” using the device
described earlier and lets 2=0 so that O will have first turn. It lets A=0
and goes to Line 130. Because A=0, the test at line 130 is true and this
removes the message telling who won or stalemate. The programme is then ready
for the first INPUT of the next game.

I hope I've been able to introduce these programming concepts in a
useful way so that you can now apply them to your own endeavours. I'll be
available at the meetings to assist further, and can also be contacted via a
letter to the Editor.

Happy Programming,
REX CHANDLER.
VICE-PRESIDENT,

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

CLUB LIBRARY

Yes we are planning to (eventually) get our club
library into action. The library will have the
items below available for hiring at special club
rates:SF-7000 disc drives, SC3000 keyboards,
SM1200 modem and software.

Hiring charges are yet to be confirmed but will be
determined at our next committee meeting and
published in the next newsletter. Another good
reason to be a financial member of the Sydney Sega
Users Group.

John Carter, Librarian

S

SEGA COMPUTER GAMES REVIEW
i e e S S R

This month we will review Castle which is available
on cartridge by Sega.

Castle is an arcade quality adventure game similar
to Sir Rodericks Quest style of game where you
controll a little man through many screens (roomsj;
but castle does not lack speed, in fact there are two
speed settings and the faster speed is really fast for
an adventure game!

There is 1@®@ different rooms to explore to finish
the game but to keep advancing to each room you will
have to collect keys to open doors, collect and use
oxygen tanks for swimming under water, ride elevators,
jump deformed creatures, ride conveyor belts, collect
a map, climb boxes, move barrels, controll cargo
lifts, ride moving platforms, collect gold! and visit
the invincible power plant for short invincibility to
name many but not all of the different tasks involved
to make it through this game. The animation and
graphics are great with a nice tune playing in the
background.

This game is a great game but by no means a push
over, you need to be carefull not to waste the keys
that yveu collect or you will not get through all of
the rooms and for those of you who have already bought
the game, there is a continue game feature- when you
lose your last life, press both HOME CLR and INS DEL
and hold down untill the game over symbcl changes to
continue, this will allow you to continue with the
keys you had and a full set of lives. However I still
do not know of anybody who can get through this game
and there zre guite a few owners of this game, so if

|
|

|

anybody has made it through this game then pleasewrite

into our SEGAMAG and give us all a few clues PLEASE!!!
For those of you who would like to purchase this
excellent game then it may be purchased from-

Computatronics- P.0O.BOX 17 Ryde 2112 $%508.0808 + $2.50

postage/packaging and handling.
Tawarri Systems (Scott) at the club meeting for
$58. 860

Reviewed by,
John Carter.

e —

1 REM PELLET MAN by Jonathan Kirkwood 1987

2 SC=0:RD=1:CLS:COLOR1,15: CONSOLEQ,24:CLS

3 PT=0:YX=15:YY=15:X1=5:Y1=5:X2=30: ¥2=19

4 CURSORO,0:PRINT”SCORE :;SC;” HI-SCORE :™;HS
926

6F

URSOR0,21: PRINT"Jonathan Kirkwood 1987”:CURSOR0,20:PRINT"PELLET MAN”
OR =1 TO RD#*20:X=INT(RND(1)#36):Y=INT(RND(1)%13)+1

7 ZZ=VPEEK(Y*40+X+2+&H3C00): IFZZ<>32THEN 6

8 CURSORX, Y:PRINT™. ™: NEXT

9 CURSORYX, YY: PRINTCHR$ (253): CURSORX1, Y1 : PRINTCHR$ (250) : CURSORX2, Y2: PRINTCHRS (250)

10 A$=INKEYS: [FA$=""THEN27?

11 BEEP1:BEEPO:CX=YX:CY=YY

12 TFASC(A$)<280RASC(A$)>31THEN2?

13 IFA$=CHRS (28)ANDYX <35 THENYX =YX +1

14 IFA$=CHR$(29)ANDYX>OTHENYX=YX-1

15 IFA$=CHRS$ (30)ANDYY>1 THENYY=YY-1

16 IFA$=CHR$ (31)ANDYY<19THENYY=YY+1

17 YV=VPEEK(YY#40+YX+2+&H3C00)

13 TFYV=250THEN44

19 IFYV=32THENCURSORCX,CY: PRINT” *:GOTO 27

20 CURSORCX,CY:PRINT™ :CURSORYX,YY:PRINT CHR$(253)

21 IFYVO4BTHEN27

22 BEEP:SC=5C+100+INT(RND(1)#51): CURSOR0,0: PRINTCHR$ (5)

23 PT=PT+1

24 CURSORO,0:PRINTSCORE :";SC3™ HI-SCORE :™;HS
25 [FPT=RD#20THENCLS: BEEP: BEEP: BEEP: GOTO3

26 GOTO27

27 X3=X1:Y3=Y1:X4=X2:Y4=Y2

28 IFYX<X3THENX3=X3-1

29 TFYK>X3THENX3=X3+1

30 IFYY<Y3THENY3=Y3-1

31 TFYY>Y3THENY3=Y3+1

32 TFYX<X4THENX4=X4-1

33 IFYX>X4THENX4=X4+1

34 IFYY<YATHENY4-=Y4-1

35 IFYY>YATHENY4=Y4+1

36 V1=VPEEK(Y3*40+X3+2+&H3C00)

37 V2=VPEEK(Y4#40+X4 +2+&H3C00)

38 IEFX1=YXANDY1=YYTHEN44

39 IFX2-YXANDY2=YYTHEN44

40 TFV1=460RV2=46THEN43

41 TFV1<>46THENCURSORX1, Y1:PRINT® »:X1=X3:Y1=Y3
42 TFV2<>46THENCURSORX2, Y2: PRINT” ":X2=Y4:Y2=Y4
43 GOTOS :
44 CLS:CURSOR13,10: PRINT"'GAME OVER™: FORV=200T0110STEP-10: SOUND1, V, 15: SOUND2, V+1,15
:NEXT:BEEP:FOR A=0 TO 500:NEXT

45 IFSC>HSTHENHS=SC

45 GOTO2

PUBLIC DOMAIN PROGRAMS ARE AVAILABLE FREE TO
MEMBERS AT THE MEETINGS. BRING YOUR BLANK DISCS
AND CASSETTES AND SEE JOHN CARTER OR REX CHANDLER

MACHINE CODE-GETTING STARTED.

Programming in Machine Code gives the advantage of great speed of
execution compared with Basic. Accordingly, much more can be made to
happen on the screen and intricate programmes can be developed. In Machine
Code, you have to be meticulous to give instructions in very fine detail
and to .look after the housekeeping, both of which are often built into
Basic commands. I will present a personal view of Machine Code as a
beginner myselfs and will try to unravel some of the mysteries to help in
getting started.

Machine Code instructions are always in hexadecimal, usually one or
two bytes long, but sometimes three or even four. Some hexadecimal bytes
used are also data which go with particular commands, for example, the
coded instruction 3E 5F means LD(A) &H5F, or load the accumulator with the
hexadecimal number 5F (ie &HS5F). Once these coded instructions have been
decided upon, they must be entered into the computer’s memory so that they
can be CALLed upon to execute when needed. The Machine Code storage area
starts at the address &HF000. There are two ways of going about this. A
programme in Basic can be made up which POKEs the commands into the memory
locations from &HFO00 onwards and then runs the programme by CALLing the
relevant memory location. Examples are 'ARCADE’ in SEGAMAG, SEPT 1988, and
'LIFE’ in NOV 1988. An easier way is to buy an ASSEMBLER programme which
lets you enter the symbols for the command (called mnemonics - yes thats
spelt correctly). It then looks up the correct hexadecimal code for you
and will also load your final programme. This second methed is called
ASSEMBLY LANGUAGE. A recommended one such as IKELA from TAWARRI will also
check for technical errors and will do some housekeeping. Once you’ve
loaded your programme and before you run it, you need to check that every
detail is correct. To do this, a dissassembler is used. A public domain
dissassembler was printed in SEGAMAG, JULY 1987. IKELA also has a built-in
dissassembler function. This gives three columns of information such as:
FO00 3ESF LD A &HSF (sometimes # is used instead of &H).

(a) FO0O- the memory location where this instruction starts,

(b) 3E5F- the hexadecimal instruction and data associated with it,
and (c) LD A &HSF- the symbolic description (or mnemonic). You can then
run your programme by CALLing whichever memory location is its starting
point, but keep your finger near the on/off swich because some nasty
'crashes’ can occur with faulty programmes. Remember to save your Basic
programme first just in case.

The mathematical language you and I understand is DECIMAL, and is
based on the number ten. The language of the computer is BINARY and its
base is one. It stores and uses information as a series of zeros and ones
(ie ons and offs) in different combinations. Each data point is called a
bit (binary digit) and eight bits are grouped together as one hyte.
Because no-one can be expected to understand a long series of zeros and
ones, a code was devised for each byte and this is called Machine Code.
Two digits are used to define each byte, the right being for the right
four (least significant) bits and the left for the left four (most
significant) bits. If, moveing from right to left, we give four bits
values of 1, 2, 4, and 8, we can see that combinations of zeros and ones
can be added together to give any number from zero to fifteen. Because of
this grouping of sixteen, the language of Machine code is called
HEXADECIMAL. In order to keep one symbol for numbers above nine, the
numbers 10-15 are represented by the letters A-F. When two hexadecimal
digits are brought together to form one byte, 266 (ie 16#16) numbers (zero
to 235) can be described. Have you ever wondered why Screen 2 is 266
pixels (bits) wide?

Another concept to understand before we tackle some of the more widely
used commands, is the Basic Interpreter. This is LEVEL 3 BASIC, for
cartridge users and DISC BASIC for disc drives. Both reside in memory from
&HO000 onwards and contain all of the Machine Code routines for
identifying and processing commands and other inputs in the BASIC language
and outputting results. These routines can be accessed directly using the
command CALL if you know the correct address. As describing these is a
substantial undertaking, I shall save this topic for later.

The symbolic architecture of the computer and particularly of the
Central Processing Unit (CPU) must be understood if programming in Machine
Code is to be successful. The computer consists of a number of chips such
as the CPU, the VideoRAM Chip, the Sound Chip, and the Communication Ports
(RS-232 and Centronics). The CPU consists of memory locations from
&HO000-GHEFFE. It is here that the Basic Interpretor and Basic and Machine
Code programmes are stored and executed. The VideoRAM chip also consists
of memory locations which can be accessed. It is here that information
which describes the current screen display is stored. Changeing the
information on this chip (such as by using VPOKE) will alter the display.
If you use POKE, information on the CPU will be changed. In Machine Code,
OUT commands and/or CALL routines are used to update the VideoRAM chip
from the CPU, (and also the Sound chip and the Ports). IN is used for
transfer of information into the CPU.

The main activity of the CPU centres on the Registers. These are given
symbollc names as follows:

AF Accumulator-Flags,

BC Usually used in counting,

DE General purposes

HL Usually used to specify addresses.
Other registers which you will not use very often are:

SP Stack Pointer,

PC Program Counter,

IX X index register,

IY Y index register,

I Interrupt vector register.
We will deal with the first four only. Each can be used singly or in pairs
except AF which always goes together. A single register contains one byte and a
register pair contains two bytes. The Accumulator is where mathematical
calculations take place. The Flags register records the status of the outcome
of these calculations. Since the Flag Register cannot be used directly for
calculations, AF can deal with one byte only. The Zero Flag, the Carry Flag and
the Sign Flag are the most important ones and by examining the Flags Register,
we can determine whether the result was zero, required a borrow/gave a carry,
or was plus/minus. The accumulator deals with 8-bit arithmetic. There are
commands which can be used for 16-bit arithmetic which use HL as an
' Accumulator’ and record the status of the outcome in the Flags register. The
Stack is an area of memory which is set aside for the storage ot data for later
usage. The contents of any register can be PUSHed onto the Stack and later
POPed back into the same or another register. The system is last-on-first-off
so if other data has been added to the stack since the required number, this
other data has to be removed before the original number can be recovered.
Memory locations selected by the programmer can also be used to store data. The
commands EXX and EX AF,AF’ can also be used. AF’ is the auxilliary register to
AF and is used in the same way but not at the same time. Simliarly, the
auxilliary registers BC’, DE’ and HL’ are accessed using EXX.

It remains now to examine some examples of the more useful commands used
for the loading, interchange, manipulation and output of data. These are
described much more fully in the series called ’Understanding Assembler’ Parts
1-5 by Scott MacDonald in SEGAMAGS June 1987, July 1987, Sept/Oct 1987, Nov/Dec
1987, and May 1988. I propose only to give a lead into these excellently
detailed references, not to duplicate them. Another useful reference is ’Z80
Assembly Language For Students’® by Roger Hutty. It can be obtained
inexpensively from Dymocks (ISBN 0-333-32295-9) and it gives a good, easy
reading, elementary description of Machine Code instructions, and binary and
hexadecimal, with exercises. The definitive text on Machine Code is
'Programming the 280’ by Rodnay Zaks (ISBN 0-83558-06905). It is a thick,
expensive and hard to follow tome, and is best used as an occasional reference.

In general, it is much more useful to determine exactly what it is you
need to do in Machine Code and then look up vour available commands to see
which one(s) will do the job, than it is to try to learn all of the commands
and then hope for insight on how they go together. There is always a command
or a group of commands which will give the desired result and you are
limited only by your imagination.

The Loading of registers is represented by LD and brackets are used to
denote 'the CONTENTS of the ADDRESS indicated’. Thus :-

LD B,A is Load the B register with the contents of A. In this action, the
content of A remains unchanged. Its value is copied into B.

LD A, (HL) is Load the accumulator with the contents of the memory location
pointed to by HL. Find the current value of HL to see which memory location
this is.

LD (F2E8),DE Loads the contents of E into the memory location F2E8, and of D

+ into F2E9. The ’least significant’ byte goes to the first memory location.

LD BC,8HSEF4 is Load B with &H5F and C with &HFA4. .
Remember, if you’re not using an assembler, you need to reverse the bytes of
numbers and of absolute memory locations. Thus :-
The hex for LD (F2E8),DE is ED 53 E8 F2

and for LD BC,&H5EF4 is 01 F4 5E.

" There are numerous variations on the LD command other than these examples.

Jumping to another memory location is achieved using JP (Jump Absolute)
and JR (Jump Relative). JP is the Machine Code GOTO. Thus JP &HFEAC means

~ jump to memory location FE4C. This can be conditional on the Flags (zero,

minus, carry and parity). Accordingly, JP NZ,&HFEAC means jump to FE4C if
the zero flag is not set. JP(HL) also works. This means jump to the address
pointed to by HL. JR e means jump forwards or backwards by the number of
addresses specified by e. The jump is forward if e is between 0 and 7F and
backwards if e is between 80 and FF. Conditional jumps on the zero and carry
flags only can also be made. Thus JR C,FB is Jump -5 if the Carry flag is
set. Beware of JR FE as this is an infinite loop.

DINZ e, is a very useful command for determining the number of times a
loop is repeated. It stands for Decrement B and Jump Relative by e memory
locations if non-zero.

CALL is the equivalent of GOSUB and, like GOSUB, it is always followed
by RET. As the return address is PUSHed onto the stack by the CALL command,
it is vitally important that the sub-routine does not alter the Stack or, if
s0s returns it to its original condition. If not, the programme gets
horribly lost (I speak from experience), CALL and RET can both be used
conditionally. Thus CALL M, FEAC means GOSUB to FEAC if the last calculation
gave a negative result. The Hex is FC 4C FE (with the address bytes swapped
around if you're not using an assembler). RET NC means return if no carry -
resulted from the last calculation.

ADD A,B adds the value in B to the value in A and leaves the result in
A with the Flags set. ADD HL,BC performs the same action using HL as the
*Accumulator’. Numerical constants or the value of an address pointed to
by (HL) can also be used. ADC is a very similar command except that the
Carry flag is also added to the result. SUB A,C subtracts C from A and
leaves the result in A. There is no equivalent command for SUB HL. SBC A,B
subtracts B from A then subtracts the carry flag. This time the equivalent
SBC HL exists.

CP B will compare the value in B with that in A without altering
either value but with the Flags affected. Thus the CP command is usually
followed by a conditional Jump or Call.

BIT 5,B tells us whether bit 5 of the B register is zero or one, by
altering the Zero flag without altering any of the registers. It also is
usually followed by a command conditional on zero. All register Bits can
be checked in this way.

Further commands deal with rotate, shift, logical operations, block
shift, block search, input and output, setting and resetting bits,
conversion to decimal arithmetic, etc. My aim was to provide an
introduction to the structure of Machine Code. Accordingly, the remaining
commands are left to other references. The next step might be to puzzle
out how these commands can be put together to perform simple functions and -
to analyze simpler programmes. I’1l be happy to answer any enquiries as
best I can either written to me c/- THE EDITOR, or at the club meetings.

Until then,

HAPPY HEXHUNTING,
REX CHANDLER (VICE PRESIDENT).

CONTRIBUTIONS: Members contributions of letters,
stories and programs are welcomed. Please submit
printed copy ready for publication (SEGAWORD

" settings: 55-5-54-66). We can reduce or enlarge

copy or graphics--new cover graphics needed for
the next issue.

Postage

Paid
SEGAMAG New SouTH WALES
PuBLISHED BY SYDNEY USERS GRouP Australia
0 Box U55
GLADESVILLE N.S.W. 2111

MR ALLAN RODD
19 CHAMPION RD
GLADESVILLE

2111 N.S.W.

