INFORMATION AND SUPPORT FOR BLITZ BASIC 2 USERS WORLD WIDE

WOW, 40+ new commands for beta
testing and some serious demos
including documented source code!
Who cares if it's 6 weeks late?

[BACIK 1N
UGB QIFIFUCIE,..

More gossip from the St Kevins Arcade office of Acid
Software & Vision Software...

Up in St Kevins Arcade things have been as crazy as ever.
Vision Software are looking to blow everyone out with Seek
and Destroy a game which | can say makes another
helicopter game released this year look like a heli-tour of
Wimbledon common.

SkidMarks is shaping up well with Andrew spending even
more time at the office than up at Auckland University
where he’s supposedly a full time student. Our raytracing
efforts are looking really nice, the packaging is pretty much
sussed and it's now time to finish the 12 tracks promised for
final release. Wo, wouldn't it be nice for the first Blitz2
commercial game to hit the top ten?

The CD32 has arrived and has been fully tested with the
entire CD collection (music that is). The controller is
awesome with no less than 7 buttons plus joypad and the
buster chip is going to get one hell of a workout over the
next few weeks.

Favourite CD of the month goes to Shihad’s CHURN, a
local kiwi group which we all hope are going to kick some
butt overseas.

Speaking of kicking butt, Blitz User’s should look out for
Amiga Format issues 51 and 52. With this sort of exposure
we’re hoping to pronounce a certain A**S PRO and
accompanying compiler out of contention for Amiga
language sales this XMas. However we need PD material
to keep the reputation alive so come on everyone, anything
will do as long as it’s different!

2 Blitz User Issue 5

No. @@m
Back in the office...
Latest gossip from the kiwi crew.
Editorial 4
From the Minister of Finance, programming
and Export affairs comes the current state of
the Acid nation.
Programming a Commodity 5
Thomas Boerkel outlines
%':'3.3’“’3 o programming a Commodity in Blitz2
. ’ Roger’s Beginners Column 7
°“""°‘:‘:’.‘.°' thie Roger delves into number systems
pro Mbited h for beginners and Simon adds a
%gmmm A cheats chart which he thinks
maybe wedin everyone should learn off by heart.
fom.
Acid Software NEW COMMANDS
B ol for Some 50 new commands for Blitz2
the reliabilty of programmers
m:»th-
magazine. Windows Library Additions 1
Editor
Simon Ammatrong Gadgets Library Additions 13
Art Director @ Screens Library Additions 14
Rod Smith
% Palette Library Additions 15
Forward all
sertongand m Misc New Commands 16
oo DISPLAY LIBRARY 17
ar; Rd
Ascicgna E ASL LIBRARY 19
fosds s test GADTOOLS LIBRARY 21

(=DM ORI\ L,

Yo BlitzUsers! Well BUMS is
late, very late! Sormry, even now
most of the new commands
haven’t got full error checking
and the docs are a little rough.
We’'ll just call this a beta
testing issue so don’t go getting
upset cos things don’t work
properly. Just calmly fill out a
bug report and send/fax/post it
my way.

OK so0 what do you get to test?
The new display library is
coming together nicely, it’s a
bit different than how slices
work but an improvement I
think overall. If you have not
already got it together with
slices I'd wait for better
documentation before having a
crack with the new display
commands.

For applications development
there is new support for both
GadTools and ASL requesters.
It scems pretty stable at present
but once again these new
commands are still in the beta-
test catagory.

It’s been enjoyable work
adding all the extra stuff and
hopefully you’ll be able to use
it to create some decent
software. Although we don’t
demand that Blitz2 be
mentioned on any releases
developed with it we would
appreciate the publicity. It is in
everyone’s interest that Blitz2
sclls well and Acid Software
keeps paying it’s bills so go on
give us a credit in your next
PD/commercial release.

Speaking of paying the bills,
our best wishes go out to
Commodore leading up to
Christmas. If they pull through
the next few months by
shipping megatons of AGA
machines the new year could
offer us all some real

opportunities for creative
projects.

The best news of course is
CD32, we'll be releasing ACID
1 before XMas which will
include an awesome AGA
version of SkidMarks,
Defender (the controllers come
with 6 buttons!!!) Insectoids2
and more. This confirms of
course the existance of a
complete set of CD32
developer commands for
Blitz2. These with a special
cable, HD CD emulation
drivers and our special bootCD
will mean Blitz2 might well
indeed be responsible for the
biggest revolution in CD
development tools ever. Hell,
we might even charge a royalty
of US$3 per disk too (just
kidding).

Other future enhancements for
Blitz2 include Oopsi support
(slowly working my way
through my RKM :), a linker,
another hack at a 3D
environment, superbitmap
windows, a new Intuitools
program, hmmm better stop...

A big hi goes out to the
AcidSoftware master
distributors, we’re slowly
developing a cohesive world
wide marketing plan for BB2,

L K3

?

4 Blitz User Issue 5

at present we have on board:

Germany: Tom & Falk
phone 02217710922 fax=0940

UK: Benoit Varasse
phone/fax 071 482 4066

OZ: Roy Hurley
phone/fax 042 281 489

USA: Dave Maziarka
phone 608 257 9057

Once we start shipping decent
quantities per month in each
region we will be helping to get
BUGs started (Blitz User
Groups). The BUGSs will take
over most of the support
including BBS support and
distribution of BUMs (Blitz
User Magazines). Keeping with
the spirit of things I would also
hope that BUGS can operate as
PD Librarics and also gather
contributions for BUMs. Each
BUG will get 2 pages in future
BUMs and we’ll get some
competitions between BUGs
going to get everyone fired up.

Anyway, I'll get BUM6 out
before XMas so everyone

knows what’s happening for
1994, promise!

SIMON
] | e
prs

@f@%@mmf)ﬁ@ Z1
comimlomir

by Thomas Boerkel

What is a Commodity? keep CPU-usage small. One exceptional type of
Commodity is a screenblanker. This one is

Before AmigaOS$ 2.0, you had to write your own interested in all kinds of input-events

custom input handler and "link" it to the input.device
if you wanted to react on several input-events. How to program a Commodity

Sometimes this method caused problems when

many programs created such handlers. There also To program a Commodity, you have to install

was a lack of transparency and control for the user. some objects. The main object is called
Starting with AmigaOS 2.0, Commodore created a "Broker”. This object is linked to the
standard for programs which act on input-events. Commodities-handler which is linked in the

input-stream. The Broker must have a message-
The new commodities.library controls all those port, where it gets messages from Exchange and the
programs (called "Commodities”) and helps the commodities.library. Other objects are:
programmer with several useful functions. The
control-program *Exchange”, which can be found in FilterObjects:filter inputeventsof your choice
your Workbench 2.x/3.x:Tools/Commodities drawer, ~ SenderObjects:send messages to ports
shows all running Commodities and information TranslateObjects:transiate/modify events.
about them. The user can enable/disable a CustomObjects:all other kinds of objects.

t(:om.mc:dlitty. force it to open/close its window and Messages from Exchange have 1o be sorted out and
erminate K. the required action has to be taken.

Almost all programs which act on input-events can

be implemented as a Commodity. Input-events are 1. Test Commodity with popup-window

N -> Translator
keystrokes, mousemoves, mouseclicks and some /
other ones that are less important. Some examples Broker -> Filter ->
for programs which can and should be implemented \
as a Commodity are: Keytranslators, program- -> Sender
launchers (for example Shell-popup), The Broker sends all input-events to the Filter. The
mouseblankers, screenblankers, screen/window- Filter sorts out one special keystroke and gives it to
tools... the Translator, which translates it to nothing (input-
event is eliminated). The Filter also activates the
What @ Commodity has to do: Sender, which sends a message to a specific
message-port. This can be and is often the same as
Commodities should have the following tooltypes: the Brokers port. The filtering, translating and sending
CX PRIORITY=x is done by the commodities.library without the need
CX_POPUP=YES|NO for the Commodity to do something. Actually the
cX POPKEY —keystroke Commodity sleeps until the Sender sends it the

message. Then it performs its action, in this example

The last two only apply to Commodities that can pope up its window.

open a window.
2 Mouseblanker with config-window.

Commodities have to react on messages from -> Transiator
Exchange. If the user tries to start the Commodity /

again (while it is already running), the new started Broker -> Filter 1 ->
should shutdown itself immediatly. The already | \

running one will receive a "UNIQUE"-message and | -> Sender 1
should then do something, normally it will popup its |

window. Commodities should be as small as -> Filter 2 -> Sender 2

i i Filter 1/Sender 1/Translator do the same as in
possible because they stay always in memory. They)) ‘
should only act on input-events of their interest to Exampie 1. They inform the Commodity when it has to

open its window and kill the input-event (keystroke)

Blitz User Issue 5 5

from the inputstream. Filter 2 activates Sender 2 on
mousemoves. Sender 2 ds a ge to the
Commodity, which then triggers its timer for
mouseblanking.

3. Funtion-Key program with config-window
-> Translator
/
Broker -> Filter 1 ->

| \

| -> Sender 1

|

| -> Filter for "F1" -> Translator for "F1"

| -> Filter for "F2" -> Translator for "F2"

| -> Filter for "F3" -> Translator for "F3"
Filter 1/Sender 1/Translator do the as in
Example 1. They inform the Commodity when it has
to open its window and kill the input-event
(keystroke) from the inputstream. For each F-key is a
Filter and a Translator installed. The Filter activates
the Translator if the specific key is pressed. The
Translator translates the keystroke to a series of
input-events (keystrokes). So pressing "F1* could
bring out the string "Dir* or something like that.
Please note that the Translator needs a number of
chained input-events in reversal(!) order. There is a
comfortable function in Amiga.lib "InvertString()"
which could do this, if it could be used in Blitz2. But
unfortunately this isnt possible in the current version
of BlitzBasic so you have to build your own chain of
input-events.

4. Screenblanker + config-window + blankkey
=> Translator 1
/
Broker -> Filter 1 ->
| \
-> Sender 1

|

|

| -> Translator 2
| /

|-> Filter 2 ->
| \
| -> Sender 2

-> Sender 3
Filter 1/Sender 1/Translator 1 do the same as in
Example 1. They inform the Commodity when it has
to open its window and kill the input-event
(keystroke) from the inputstream. Filter 2/Sender
2/Translator 2 are necessary for the blankkey. If the
blanker gets a message from Sender 2 it has to
blank at once. Sender 3 is directly connected to the
Broker. This means that it sends a message to the
port for every input-event, because a screenblanker
is interested in almost every kind of input-event. The
screenblanker has to select which action to do on
which input-event. Normally only screenblankers
have to look after every input-event. All other
Commodities usually are only interested in special

6 Blitz User Issue 5 |

input-events. So the blanker can receive mi ges at
the Brokers message-port from all 3 senders and from

Exchange.

Sources

On the BUMS coverdisk you should find the documented
sources to BlitzBlank (full-featured screenblanker) and
TestComm (simply a test with popup-window and key-
translation for the F1-key).

Parts of special interest in BlitzBlanks source:

WB-startup-handling: BlitzBlank does not use
"WBStartup®, but does its own WB-startup-handling to
be able to get its tooltypes. Look at the start of
BlitzBlank to see how the WBMessage is got, and at the
end of the main program to see what a program with its
own wb-start-handling has to do at the end (hey, Simon,
what about getting tooltypes with Blitz-commands?).

Getting the tooltypes: At the start of BlitzBlank, it gets
its tooltypes with FindToolTypes ().

Screenmoderequester: The included procedure
"Screenreq” gets the possible screenmodes from your
machine and displays a screenmoderequester with
GadTools-gadgets. It uses the global long variables
“modeid®, “width", “height*, "depth”.

GadTools-GUI: BlitzBlanks window is full of different
kinds of GadTools-gadgets. Look at the subroutines
“winon" and "gadgets" to see how that works. Preparing
an image for a GadTools-gadget: The drawer-gadget's
image is prepared in the subroutine "doimagedata” and
freed in “freeimagedata”.

Writing tooltypes to icon: BlitzBlank is able to set its
own tooltypes with the current settings if the user clicks
on the SAVE-gadget. Look at the subroutine "writett*

Using the ASL-filerequester: BlitzBlank displays the
ASL-filerequester when the user presses <HELP> in the
path-gadget or clicks on the drawer-gadget. The
requester is displayed with the subroutine “aslfilereq".

Using EasyRequesters: In certain cases, BlitzBlank
displays an EasyRequest. This is done in the subroutine
“requester”.

Reading and writing config-data: The subroutines
“readconfig” and "writeconfig” handle the
"BB.modules.config" file. These are just the same
routines as in the modules, but in BlitzBlank theyre done
with OS-routines.

Setting up the Commodity: The subroutine
"docommall”® sets/resets the Commodity-objects.

Killing the Commoditys objects: The subroutine
“killcomm" deletes all Commodity-objects.

Finding the available modules: The subroutine
*findmodules" searches with MatchNext() from DOSASL
in the module-directory.

Handling an exec.library-list: An exec-list is needed
for the ListView-gadget of modules. The subroutines
"initlist", "addalinodes” and “freealinodes” handle this
list.

[ROGI=ERS

(B=CIUNINI=E RS

coL. Wi

Hi again and welcome to the second of the
beginners tutorials, this issue we will be
covering NUMBER SYSTEMS

Firstly, I'm gonna take some of the rap for the
lateness of BUM #5 I've been a trifle lazy
getting my stuff in to Simon, so sorry folks,
still better late than never.....

This topic NUMBER SYSTEMS is actuall
quite advanced and you'll find many a BASI
programmer who has no concept of them
whatsoever, however as with last month if you
want to REALLY understand programming,
you'll want to know these so ONWARD.....

(1& WHAT A COMPUTER IS, HOW
COMPUTERS COUNT, WHAT MEMORY IS
AND WHAT NUMBER SYSTEMS WE
CONVERSE WITH A COMPUTER IN.

Phew.... Few techie words in that title eh? |
have never seen a programming article that
covers these topics first which is a pity as
unless you understand how computers store
information and how to retrieve and
manipulate it then you wont ever FULLY
understand programming.

What a computer is:

A computer is a collection of millions of
interconnected switches, these combinations
of switches can do all sorts of flash things but
the fundemental of ALL comﬁuters. from
calculators to main-frames is that they only
understand 2 things. ON and OFF

So basically this mega-expensive machine
you shelled out on is no more advanced than
the light switch across the room, were all the
tricky things you can do with a computer
comes in with the fact that a computer can
switch things FAST and in different
combinations, However from a programmers
point of view we need a convenient way to
describe weather something is ON or OFF
and the simplest way is to use the number 1
for ON and 0 for off

1=0N
0 = OFF

This is called the Binary number system

The number system we use in everyday life is
the DECIMAL number system (base 10), this
system is used as we have 10 fingers and its
those we used to count with, however to
understand the basics of programming we
need to learn BINARY (base 2) DECIMAL
(base 10) we already know and
HEXADECIMAL (base 16)

Whats a binary number?
Waell to start you thinking heres a table with

Binary numbers on the left and their decimal
equivilents on the right from 0 to 10:

DEC BIN

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
10 1010

Pretty Bizzarre huh? Well at least it looks that
way until | tell you that all you have to do to be
able to do Decimal/binary conversion is to add
numbers and double numbers! ie:

OGONONDWN=O

32)16|8|4]|2|1 Decimal numbers

1]10(|1]1]0|1 Binary Number

Ok so lets examine that table:

First thing to note is that the ‘%’ character in
front of the binary number is just how
programmers specify that the digit is in binary

Blitz User Issue 5 7

ie: 10 is the number 10 in decimal
%10 is the number 2 in decimal

Ok now lets go back to the table, remember
| told you all you had to do was be able to
add and double well heres why, the top
level of the table starts at the right at 1 and
doubles (or goes to the power of 2) at each

step to the left ie:

1 = 1
12 = 2
22 = 4
42 = 8
82 = 16
16'2 = 32 etc etc etc

Right, so that covers the doubling, now the
next level down is the binary number. As
you can see the little holes below the
decimal numbers either have a 1 (ON) or 0
(OFF) in them. If the holes are ON then that
means the decimal figure above is part of
the resultin? decimal number if the hole is
S

OFF then it

%101101 = in decimal
32+8+4+1 = 45 decimal

n't so in the above example

Ok so draw yourself a copy of table 2 and
using the knowledge you now have calulate

the binary numbers for:
a)32 b)13 c)24 d)5 e)64

If you have any problems just read through

the example again until it "clicks’

Ok, if you have done your sums (just like
your back at school) then these are the

answers
a)%100000 b)%1101 ¢)%11000
d)%101 e) %111111

Ok, now if we extended that table by
doubleing our decimals you can see that by
each position we add to the left doubles the

maximum possible value we can represent

ADVANCED: This question is designed to
get you guys really thinking for yourselves, |
want you to try and work out the number
250 in binary, using common sense and the
information above you hopefully will be able

to do it.

ANSWER: You had to create more
columns, you had to create eight columns

so the answer looked like this:

8 Blitz User Issue 5

250=128+64+32+16+8+2
128164 |32|16]8 |4 I 201
1 111} 1{1]j0)1]0

s0 250=%11111010

Right, so you can see so you can work out
any number in binary, after a while you will
be able to work out quite a few binary
numbers in your head so keep practising,
uanbtlil you can do it mentally, check it using
tables.

Ok now work out 32987928437098274 in
Binary -- Just kidding

HEXADECIMAL

Now the only other number system you
need to know is Hexadecimal. As discussed
before binary is Base 2 Decimal is Base 10
and Hexadecimal is Base 16 (ie Decimal +
Hexa) Most of you will know that Hex
means 6 so 10+6= 16.

It's at this point that we come to a rather
interesting problem, thus far we have only
had to represent number systems with a
base lower than 10 now that we have a
base above 10 we need to invent some new
number symbols and here they are

A =10
B =11
C =12
D =13
E =14
F=15

So there it is Hex values range from 0 to F
and just as we preceeded a binary number
with a '%’ sign, we preceed a hex number
with a '$’ sign. Here are some Hex
numbers: $1FAB, $FF, $FACE, $234DE

So how do we translate from decimal to hex
and vica versa well the way | do it involves
converting the number to binary inbetween.

PROB: To translate the number 182 in
decimal to its hexidecimal value

ANSWER: Firstly convert 182 to Binary
(%10110110), then we convert from Binary
to Hex. The important part to understand
here is that hex (base 16) can represent the
numbers 0 to 15 before you havs to do a
carry over to the next column.

The next bit to realise is that we can represent
the numbers 0 to 15 in binary in 4 bits ie:

%1111 =15=8f

So by dividing our binary number into a series
of 4 bit segments we can work out our hex
value ie: 182 in binary is %10110110, separate
into 4 bit segments: 1011 & 0110 and then
convert these 4 bit segments back to Hex ($0 -
$F) which gives $B6.

This may seem rather long winded (IT IS!l) but
you'll soon be able to do numbers like that in
your head, and as you'll find out at the end of
this lession there is a REALLY EASY way to do
this stuff :) Ok now lets convert from
hexidecimal to decimal Its basically the same
process in reverse.

PROB: Convert the number $FA in hexidecimal
to decimal.

ANSWER: First convert the Hex value to binary
So $FA splits into 2 lots of 4 bits %1111 &
%1010.

Now convert this 8 bit number to decimal ie:

128164 |32|16|8 4|21
1 |1]1]1]1]0]1]|0

So $Fa=128+64+32+16+8+2=250.

If you do bigger numbers and they don’t split
into even lots of 4 bit segments its no problem,
just split them into 4 bit segments (allways
starting at the rightl!l) and work out your values
then just work out your last value with whatever
bits are left over ie:

%1101011101 => %11 0101 1101 =>$35D

So that's number systems, were now going to
go into why we use these number systems, and
I'm going to blither on about how this relates to
last months article, but before | do remember |
promised you a really easy way of working all
this out?

Simply use the Calculator option in the Blitz2
compiler menu this will allow to enter a number
in any base (jsut prefix it with % or $ if its binary
or hex) click on the number system you want
the answer to and Voila there is your answer,
now before you lynch me for boring you to

death with stuff you didn’t need to know, YOU
DO NEED TO KNOW THIS, next month when
we stop all this boring theory and get into some
actual BLITZING you will know why until
then...... <puts on best Arnold Schwartznegger
voice> 'TRUST ME'......

Last month | did a paragraph about signed and
unsigned numbers and ended up just telling
you to believe me. I'm now going to show you
why variables only hold up to certain numbers
and why. THIS is one of the reasons why
understanding number systems is necessary to
understand programming. First a quick recap, if
you remember there are 3 basic types of sizes
a compter understands (blitz adds a few of its
own but they are still based on these three
types, they are.)

.b=BYTE=8bits
.w=WORD-=16bits
I=LONG=32 bits

Now last month | said a unsigned BYTE can
hold from 0 to 255 THIS is why

0=%00000000->Smallest value 8 bits can hold
255=%11111111->Largest value

Now if we use SIGNED BYTES the computer
needs a way of telling if the values is positive
or negative, it does this by setting the most
significant bit (thats techie talk for the one on
the extreme left) to on if the valueis NEGATIVE

THIS MEANS, that the maximum value you
can store is HALVED because that top bit is no
longer available for your number and as you
know every bit you add to a number doubles its
capacity so taking one away halves it so as an
example here are the answers to a binary
value for a UNSIGNED and SIGNED byte
%10000001 as a unsigned byte equals 129
%10000001 as a signed byte equals -1

So now you see why in a byte you can
represent either UNSIGNED 0 - 255 or
SIGNED -128 to +128 The same is true for
word and long word values | wont demonstrate
them, but it is the case. Well that’s it for
another month, next month we do a tiny bit of
theory on truth tables, and then get into basic
programme flow control and into some REAL
PROGRAMME WRITING. Until then, keep on
hammering away yourselves, and if you write
something then SEND IT OVER THE WATER
to us here in NZ.
ROGER

Blitz User Issue 5 9

(300 0 9%00000000 $40 64 @ 901000000 $80 128 %10000000 $CO 192 A %711000000
$01 1 %00000001 $41 65 A %01000001 $81 129 %10000001 $C1 183 A %11000001
$02 2 %00000010 $42 66 B %01000010 $82 130 %10000010 $C2 194 A %11000010
$03 3 900000011 $43 67 C %01000011 $83 131 %10000011 $C3 185 A %11000011
$04 4 %00000100 $44 68 D %01000100 $84 132 %10000100 $C4 196 A %11000100
$05 5 900000101 $45 69 E %01000101 $85 133 %10000101 $C5 197 A 911000101
$06 6 %00000110 $46 70 F %01000110 $868 134 %10000110 $C8 198 /A %11000110
$07 7 900000111 $47 71 G 901000111 $87 135 94610000111 $C7 199 %11000111
$08 8 %00001000 $48 72 H 901001000 $88 1368 $610001000 $C8 200 %11001000
$03 9 %00001001 $49 73 | 901001001 $89 137 %10001001 $C9 201 %11001001
$0A 10 %00001010 $4A 74 J %01001010 $BA 138 %10001010 $CA 202 %11001010
$0B 11 %00001011 $4B 75 K 9%01001011 $8B 139 %10001011 $CB 203 %11001011
$0C 12 %00001100 $4C 76 L 901001100 $8C 140 %10001100 $CC 204 %11001100
$oD 13 %00001101 $4D 77 M 901001101 $8D 141 %10001101 $CD 205 911001101
SOE :g v.oooomo $4E ;g g %0;00"10 $8E ’ g;%:n(‘) $CE 206 %11001110
... %01001111,....38F 143 910001111 _SCE..207..1...%41.1001.1.11
fl)g 16 %ooég 3 80P % 3%330 gg ﬁ %10010000 $D0 208 g 911010000
$11 17 900010001 $51 81 Q 9601010001 910010001 $D1 209 %11010001
$12 18 %00010010 $52 82 R 901010010 892 146 %10010010 $D2 210 %11010010
$13 19 %00010011 $53 83 § 901010011 $93 147 %10010011 $D3 211 %11010011
$14 20 %00010100 $54 84 T 901010100 $94 148 %10010100 $D4 212 %11010100
$15 21 %00010101 $55 85 U 901010101 $95 149 %10010101 $Ds 213 %11010101
$16 22 %00010110 $56 86 V 9601010110 $96 150 %10010110 $D8 214 %11010110
$17 23 %00010111 $57 87 W %01010111 $97 151 %10010111 $D7 215 x %11010111
$18 24 %00011000 $58 X 901011000 $98 152 %10011000 $D8 216 @ %11011000
$19 25 900011001 $59 89 Y 901011001 $99 153 %10011001 $D9 217 U %11011001
$1A 26 %00011010 $5A 90 Z 9601011010 $9A 154 %10011010 $DA 218 %11011010
$1B 27 900011011 $58B 91 | 9601011011 $98 1 %10011011 $DB 219 3 %11011011
$1C 28 %00011100 $5C 92 \ 901011100 $9C 156 %10011100 $DC 220 U %11011100
$1D 29 %00011101 $5D 93 | %01011101 $9D 157 %10011101 $DD 221 911011101
$1E 30 %00011110 $5E 84 ~ 901011110 $9E 150 %10011110 $DE 222 b %11011110
gg 31 ... /00011111 ..2:25...95.... LW 01011111 SOF 159 910011111 . SOF..223..8...%1.1011.111
32 %00100000 8T RUT160000" a0 ied $%16100000 $EO 224 & %11100000
$21 33 | %00100001 $61 97 a %01100001 S$A1 161 | 9%10100001 $E1 225 & 9%11100001
$22 34 " %00100010 $62 98 b 901100010 $A2 162 ¢ %10100010 $E2 226 & %11100010
$23 35 # %00100011 $63 99 c 01100011 $A3 163 £ %10100011 $E3 227 & %11100011
$24 36 § 00100100 $64 100 d 901100100 $A4 164 = %10100100 $E4 228 & %11100100
$25 37 % %00100101 $65 101 e %01100101 SAS 165 ¥ %10100101 $ES5 229 & %11100101
$26 38 & 900100110 $66 102 f 9601100110 $A6 166 %10100110 $E6 230 & %11100110
$27 39 ' 900100111 $67 103 g %01100111 $A7 167 910100111 $E7 231 %11100111
$28 40 (900101000 $68 104 %01101000 $A8 168 910101000 $E8 232 s %11101000
$29 41) 9%00101001 $69 105 | 901101001 SA9 169 © %10101001 SE9 233 é %11101001
$2A 42 ° %00101010 $6A 106 L %01101010 $AA 170 ? 9610101010 SEA 234 & %11101010
$2B 43 + 900101011 $6B 107 %01101011 $AB 171 « %10101011 $EB 235 & %11101011
$2C 44 , 900101100 $6C 108 | %01101100 SAC 172 %10101100 $EC 236 i %11101100
$2D 45 - 9%00101101 $6D 109 m %01101101 S$AD 173 - %10101101 $ED 237 | 911101101
$2E 46 %00101110 $6E 110 n 9%01101110 SAE 174 ® %10101110 SEE 238 T %11101110
ggu/ ... 5001011 lzﬁF' 11,0, . %01101111 ...;35...1].5... 210100141 se.e...zaa..l...m 1 uu 1 u
Wo0170000™ " $2 112 "p W1 116000 17875 " %i6110000 SFO 240 8
$31 49 1 %00110001 $71 113 q %01110001 $B1 177 % %10110001 $F1 241 A %nnooo:
$32 50 2 %00110010 $72 114 r %01110010 $B2 178 * %10110010 $F2 242 O %11110010
$33 51 3 %00110011 873 115 s 9601110011 $B3 179 2 %10110011 $F3 243 & %11110011
$34 52 4 %00110100 $74 116 t 9001110100 $B4 180 %10110100 $F4 244 § %11110100
$35 53 5 9600110101 $75 117 u 9%01110101 $BS 181 %10110101 $F5 245 & %11110101
$36 54 6 900110110 $76 118 v 901110110 $B8 182 %10110110 $SF6 246 O %11110110
$37 55 7 %00110111 $77 119 w %01110111 $B7 183 ¢ %10110111 $SF7 247 + %11110111
$38 56 8 900111000 $78 120 x %01111000 $B8 184 %10111000 $F8 248 o %11111000
$39 57 9 %00111001 $79 121 y %01111001 $B9 185 ' %10111001 $F9 249 U %11111001
$3A 58 %00111010 $7A 122 z 901111010 $BA 186 ¢ %10111010 $FA 250 O %11111010
$3B 59 ; %00111011 $7B 123 ‘ %01111011 $BB 187 » %10111011 SFB 251 O %11111011
$3C 60 < %00111100 $7C 124 %01111100 $BC 188 ‘A%IOHI!OO $FC 252 O %11111100
$3D 61 = %00111101 $7D 125 } %01111101 $BD 189 42 %10111101 $FD 253 9%11111101
$3E 62 > %00111110 S$7E 126 ~ 01111110 SBE 190 % %10111110 SFE 254 %11111110
\SSF 63 7 %00111111 S7F 127 %01111111 $BF 191 ; %10111111 SFF 255 %11111111
™ ™

[$100 256 %0001 00000000 (51000 4096 %0001 0000 0000 0000

$200 512 %0010 0000 0000 $2000 8192 90010 0000 0000 0000

$300 768 %0011 0000 0000 $3000 12288 %0011 0000 0000 0000

$400 1024 %0100 0000 0000 $4000 16384 960100 0000 0000 0000

$500 1280 %0101 0000 0000 $5000 20480 960101 0000 0000 0000

$600 1536 %0110 0000 0000 $6000 24576 960110 0000 0000 0000

$700 1792 %0111 0000 0000 $7000 28672 %0111 0000 0000 0000

$800 2048 %1000 0000 0000 $8000 32768 %1000 0000 0000 0000

$900 2304 %1001 0000 0000 368684 %1001 0000 0000 0000

$A00 2560 %1010 0000 0000 $A000 40960 %1010 0000 0000 0000

$BO0 2816 91011 0000 0000 45056 %1011 0000 0000 0000

$C00 3072 %1100 0000 0000 $C000 49152 %1100 0000 0000 0000

$D00 3328 %1101 0000 0000 $D000 53248 %1101 0000 0000 0000

$E00 3584 %1110 0000 0000 $E000 57344 %1110 0000 0000 0000

L $FO0 3840 %1111 0000 0000 $F000 61440 %1111 0000 0000 0000

S

/ L

THIS PAGE WAS GENERATED and PAGESET IN 12 MINUTES! Simon

NEW COMMANDS

Due to severe time mis-management example code and explanations that make any sense of
the following commands have had to be delayed until next issue (yeh sure Simon).

Some examples have been included in the examples drawer of BUMS5's cover disk. Also
source code to the new GadTools and Display libraries have been included in the libsdev
drawer for those capable of making any sense of them.

Window Library Additions

Statement; Window

Syntax: Window Window#.x,y, width, height, flags, title$,dpen, bpen|,gadgetlist#|,bitmap#]]

The Window library has been extended to handle super bitmap windows. SuperBitMap
windows allow the window to have it's own bitmap which can actually be larger than the
window. The two main benefits of this feature are the window’s ability to refresh itself and the
ability to scroll around a large area "inside"” the bitmap.

To attach a BitMap to a Window set the SuperBitMap flag in the flags field and include the
BitMap# to be attached.

Statement: PositionSuperBitMap

Syntax: PositionSuperBitMap x,y

PositionSuperBitMap is used to display a certain area of the bitmap in a super bitmap window.
Example:

i

3} super bitmap example

;

Jjoreate large bim!ap for our superbitmap window

width=320:height=200 BitMap 0,width height,2:
Circlet 160,100,160,100,1:Box 0,0, width-1,height-1,3

FindScreen 0
itwo sliders for the borders (see new gadget flags next page)

PropGadget0,3,-8, $18000+4+8+64,1,-20,8
PropGadget 0,-14,10,$11000+2+ 16+ 128,2,12,-20

sreporting of mousemoves means we can track the propgadget as it is moved
AddIDCMP $10

SizeLimits 32,32, width+22 height+20
Window 0,0,0,100,100,$1489,"HELL0O",1,2,0,0

Blitz User Issue 5 11

Gosub drawsuper

Repeat

ev.=WaitEvent

If ev=2 Then Gosub dosize

If ev=$20 Then Gosub domove
Until ev=$200
End

dosize:
SetHProp 0,1,posxiwidth, InnerWidth/width
SetVProp 0,2 posylheight, InnerHeight/height
Redraw 0,1:Redraw 0,2:Goto drawsuper

domove:
Repeat:Gosub drawsuper:Until WaitEvent<>$10:Return

drawsuper:
ww=width-InnerWidth:hh=height-innerHeight
posx=QLimit(tHPropPot(0,1):(ww+1),0,ww)
posy=QLimit(YPropPot(0,2)tChh+ 1),0,hh)
PositionSuperBitMap posx,posy
Retum

Statement: GetSuperBitMap & PutSuperBitMap

Syntax: GetSuperBitMap & PutSuperBitMap

After rendering changes to a superbitmap window thebitmap attached can also be updated
with the GetSuperBitMap. After rendering changes to a bitmap the superbitmap window can
be rdefrgst;\ed with the PutSuperBitMap command. Both commands work with the currently
useda winaow.

Statement: WTitle

Syntax: WTitle windowtitle$,screentitle$

WrTitle is used to alter both the current window’s title bar and it's screens title bar. Useful for
displaying important stats such as program status etc.

Statement: CloseWindow

Syntax: CloseWindow Window#

CloseWindow has been added for convenience. Same as Free Window but a little more
intuitive (added for those that have complained about such matters).

Statement: WPrintScroll

Syntax: WPrintScroll

12 Blitz User Issue 5

WPrintScroll will scroll the current window upwards if the text cursor is below the bottom of
the window and adjust the cursor accordingly. Presently WPrintScroll only works with
windows opened with the gimme00 flag set (#gimmezerozero=$400).

Statement; WBIit

Syntax: WBIit Shape#,x,y

WBIit can be used to blit any shape to the current window. Completely system friendly this
command will completely clip the shape to fit inside the visible part of the window. Use
GimmeZeroZero windows for clean clipping when the window has title/sizing gadgets.

Statement: BitMaptoWindow

Syntax: BitMaptoWindow Bitmap#, Window#{,srcx, srcy,destx,desty, wid, height]

BitMaptoWindow will copy a bitmap to a window in an operating system friendly manner
(what do you expect). The main use of such a command is for programs which use the raw
bitmap commands such as the 2D and Blit libraries for rendering bitmaps quickly but require a
windowing environment for the user inyerface.

Functions: EventCode & EventQualifier

Syntax: EventCode & EventQualifier

EventCode returns the actual code of the last Event received by éour program,
EventQualifier returns the contents of the Qualifier field. Of use with the new GadTools library
and some other low level event handling requirements.

Gadget Library Additions

Five new flags have been added when defining gadgets in Blitz2. The first four are for
attaching the gadget to one of the windows borders, the GZZGADGET flag is for attaching the
gadget to the "outer” rastport/ layer of a gimme zero zero window.

#RIGHTBORDER $1000
#LEFTBORDER $2000

#TOPBORDER $4000
#BOTTOMBORDER $8000
#GZZGADGET $10000

PropGadgets have been upgraded to take advantage of the 2.0 "newlook" whenfif available.

Statement: Toggle

Syntax: Toggle GadgetList#,/d [,On/Off]

The Togggle command in the gadget library has been extended so it will actually toggle a
gadgets status if the no On|Off parameter is missing.

Blitz User Issue 5 13

Screen Library Additions
Statement: CloseScreen

Syntax: CloseScreen Screen#

CloseScreen has been added for convenience. Same as Free Screen but a little more
intuitive (especially for those that have complained about such matters (yes we care)).

Statement: HideScreen

Syntax: HideScreen Screen#
Move Screen to back of all Screens open in the system.

Statement: BeepScreen

Syntax: BeepScreen Screen#

Flash specified screen.

Statement: MoveScreen

Syntax: MoveScreen Screen#,deltax,deltay
Move specified screen by specified amount. Good for system friendly special effects.

Statement: ScreenTags

Syntax: ScreenTags Screen#, Title$ [&TagList] or [[, Tag, Dataj...]

Full access to all the Amiga’s new display resoutions is now available in Amiga mode by use
of the Screen Tags command. The following tags are of most interest to Blitz programmers:
(see autodocs/

#L eft=$80000021:#Top=$80000022:#Width=$80000023:#Height=$80000024
#Depth=$80000025:#DetailPen=$80000026:# BlockPen=$80000027
#Title=$80000028:#Colors=$80000029:#ErrorCode=$8000002A
#Font=$8000002B:#SysFont=$8000002C:#Type=$8000002D:#BitMap=$8000002E
#PubName=$8000002F:#PubSig=$80000030:#PubTask=$80000031
#DisplaylD=$80000032:#DClip=$80000033:#Overscan=$80000034

#0bsolete 1=$80000035

#ShowTitle=$80000036:#Behind=$80000037:# Quiet=$80000038
#AutoScroll=$80000039:#Pens=$8000003A:#FullPalette=$8000003B
#ColorMapEntries=$8000003C:#Parent=$8000003D:#Draggable=$8000003E
#Exclusive=$8000003F

14 Blitz User Issue 5

#SharePens=$80000040:#BackFill=$80000041:# Interleaved=$80000042
#Colors32=$80000043:#VideoControi=$80000044
#FrontChild=$80000045:#BackChild=$80000046
#LikeWorkbench=$80000047:#Reserved=$80000048

.
’

; open super wide screen with overscan set for smooth horizontal scroll
3 for 2.0 and above with amigalibs.res in resident

.
!

s_BitMap=$8000002E:x_Overscan=$80000034:s_Width=$80000023:8_Height=$80000024
BitMap 0,1280,512 2:Circlef 320,256,256,1

ScreenTags 0,'TEST" s_BitMap,Addr BitMap(0),8_Overscan,1,s_Width,640,8_Height,512
tvp.ViewPort=ViewPort(0)

While Joyb(0)=0
VWait
typiDxOffset=-SMouseX ,-SMouseY
ScrollVPort_ tvp

Wend

Palette Library Additions

The Palette library has been modified in BUMS5 for two reasons. Firstly, it was impossible to
perform custom fades using two palettes as the Use Palette command affected the current
Slice or Screen. Also with the advent of the Display library the extra properties of the Use
Palette command (copy colors to current Slice or Screen) became unwanted.

The ShowPalette command has been added to replace the above functionality removed from

the Use Palette command. Also, for compatability reasons NewPaletteMode On is used for
enabling the above modifications (default is off).

Statement: ShowPalette

Syntax: ShowPalette Palette#

gpowPalene replaces Use Palette for copying a palette’s colours to the current Screen or
ice.

Statement: NewPaletteMode

Syntax: NewPaletteMode On/Off

The NewPaletteMode flag has been added for compatibility with older Blitz2 programs. By

setting NewPaletteMode to On the Use Palette command merely makes the specified palette

tshre current object and does not try to copy the colour information to the current Screen or
ice.

Blitz User Issue 5 15

MISC ADDITIONS
Statement: SortList

Syntax: SortList Arrayname()
The SortList command is used to rearrange the order of elements in a Blitz2 linked list. The

order in which the items are sorted depends on the first field of the linked list type which must
be a single integer word. Sorting criteria will be extended in future releases.

Statement: LoadFont

Syntax: LoadFont /ntuiFont# Fontname.font$,Y size [,style]

The LoadFont command has been extended with an optional style parameter. The following
constants may be combined:

#underined=1

#bold=2

#italic=4

#extended=8 ;wider than normal

#colour=64 ;hmm use colour version | suppose

Statement: SpriteMode

Syntax: SpriteMode mode
For use with the capabilities of the new Display library SpriteMode is used to define the width

of spritess to be used in the program. The mode values 0, 1 and 2 correspong to the widths 16,
32 and 64.

Function: Exists

Syntax: Exists (FileName$)

Exists actually returns the length of the file, if 0 the file either does not exist or is empty or is
perhaps not a file at alll Hmmm, anyway the following poke turns off the "Please Insert Volume
Blah:" requester so you can use Exists to wait for disk changes:

Poke.| Peek.I(Peek.I(4}+276)+ 184 ,-1

Statements: Runerrson & Runerrsoff

Syntax: Runerrson & Runerrsoff

These two new compiler directives are for enabling and disabling error checking in different
parts of the program, they override the settings in Compiler Options.

16 Blitz User Issue 5

The New Display Library
(#displaylib=143)

The new display library is an alternative to the slice library. Instead of extending the slice
library for AGA support a completely new display library has been developed.

Besides support for extended sprites, super hires scrolling and 8 bitplane displays a more
modular method of creating displays has been implemented with the use of CopLists. CopLists
need only be initialised once at the start of the program. Displays can then be created using
any combination of CopLists and most importantly the CreateDisplay command does not
allocate any memory avoiding any memory fragmenting problems. The new display library is
for non-AGA displays also.

Statement: InitCopList

Syntax: InitCopList CoplList# ypos,height,type,sprites, colors,customs, widthadjust)

InitCoplList is used to create a CoplList for use with the CreateDisplay command. The ypos,
height parameters define the section of screen. Sprites, colors and customs will allocate
instructions for that many sprites (always=8l!) colors (yes, as many as 256!) and custom
copper instructions (to be used by the new DisplayFX library currently in deviopment).

The widthadjust parameter is currently not implemented, for display widths other than standard
see the DisplayAdjust command. The following constants make up the type parameter, add
the number of bitplanes to the total to make up the type parameter.

#smoothscroll=$10 #dualplayfield=$20 #extrahalfbrite=$40 #ham=$80

#lores=$000 #hires=$100 #super=$200
#loressprites=$400 #hiressprites=$800 #supersprites=$c00
#fmode0=$0000 #fmode1=$1000 #fmode2=$2000 #fmode3=$3000

For displays on non-AGA machines only #fmode0 and #loressprites are allowed. More
documentation, examples and fixes will be published soon for creating displays.

Statement: CreateDisplay

Syntax: CreateDisplay CopList#[,CopList#..]

CreateDisplay is used to setup a new screen display with the new display library. Any number
of CoplLists can be passed to CreateDisplay although at present they must be in order of
vertical position and not overlap. CreateDisplay then links the CopLists together using internal
pointers, bitmaps, colours and sprites attached to coplists are not affected.

Statement: DisplayBitMap

Syntax: DisplayBitMap CopList#,bmapl,x,y] [,bmap[,x.y]]

The DisplayBitMap command is similar in usage to the slice libraries’ show commands.
Instead of different commands for front and back playfields and smooth scroll options there is
only the one DisplayBitMap command with various parameter options. With AGA machines,
the x positioning of lores and hires coplists uses the fractional part of the x parameter for super
smooth scrolling.The CopList must be initialised with the smooth scrolling flag set if the x,y
parameters are used, same goes for dualplayfield.

Blitz User Issue 5 17

Statement: DisplaySprite

Syntax: DisplaySprite CoplList#,Sprite#,X,Y,Sprite Channel

DisplaySprite is similar to the slice libraries ShowSprite command with the added advantage of
super hires positioning and extra wide sprite handling. See also SpriteMode.

Statement: DisplayPalette

Syntax: DisplayPalette CoplList#,Palette# [,coloroffset]

DisplayPalette copies colour information from a Palette to the CoplList specified.

Statement: DisplayControls

Syntax: DisplayControls CopList#,BPLCONZ2,BPLCON3,BPLCON4

DisplayControls allows access to the more remote options available in the Amiga’s display
system. The following are the most important bits from these registers (still unpublished by
Commodore!*()@GYU&")

BPLCON2 BPLCON3 BPLCON4
15]* BANK2 * active colour bank BPLAM7 xor with bitplane
14| ZDBPSEL2 which bitplane for ZD BANK1 * BPLAMG6 DMA for altering
13| ZDBPSEL1 BANKO * BPLAMS effactive colour
12| ZDBPSELO PF20F2 col-offset for playfield 2 | BPLAM4 look up
11| ZDBPEN makes above bp hit ZD PF20F1 BPLAM3
10} ZDCTEN ZDis bit#15 of colour PF20F0 BPLAM2
09| KILLEHB ™ LOCT “palette hiflo nibble mode | BPLAM1
08| R =0 BPLAMO
07| SOGEN I sync on green SPRES1 *sprites resolution ESPRM7 h?h order color
06| PF2PRI H playfisld 1/2 priority SPRESO * ESPRM8 offset for even
05| PF2P2 H playfield/sprite priority | BRDRBLANK border is black ESPRMS sprites
04} PF2P1 BRDNTRAN border hits 2D ESPRM4
03| PF1PO OSPRM?7 high order color
02} PF1P2 ZDCLCKEN ZD=14Mhz clock OSPRMS offset for odd
01| PF1P1 BRDSPRT sprites in borders! OSPRMS sprites
00| PF1PO EXTBLKEN wo blank outputl OSPRM4
! = Don't touch

H -See standard hardware reference manual
* - controlled by dtsp(a; library
ZD - any reference to ZD is only a guess (just sold my genlock)

Statement: DisplayAdjust

Syntax: DisplayAdjust CopList#,fetchwid,ddfstrt, ddfstop, diwstrt, diwstop

Temporary control of display registers until | get the widthadjust parameter working with
initCopList. Currently only standard width displays are available but you can modify the width
manually (just stick a screwdriver in the back of your 1084) or with some knowledge of
Commodores AGA circuitry.

Anyway, before | start going on about why they couldn't just give us byte per pixel instead of 8
dam bitplanes (CD32 to the rescuel) see the cover disk for more information...

18 Blitz User Issue §

The New ASL Library
(#myasllib=80)

Our policy until now has been that we would only place emphasis on 1.3 compatible
commands unless of course they had to do with AGA. Then again | don’t even have a
LoadWB in my startup-sequencel So instead of complaining | spent an uncomfortable week
adding the following 2.0 above specific commands to Blitz2.

And as for those with 1.3 and want new ROMS? BURN BABY BURN...

Function: ASLFileRequest$

Syntax: ASLFileRequest$ (7itle$, Pathname$, Filename$ [,Pattern$] [,x,y,w,h])

The ASL File Requester is nice. Except for the highlight bar being invisible on directories you
get to use keyboard for everything, stick in a pattern$ to hide certain files and of course you
get what ever size you want. | made it call the Blitz2 file requester if the program is running
under 1.3 (isn’t that nicel). There is a fix that patches the ReqTools file requester but that
doesn’t have the date field.

I couldn’t get the Save-Only tag or the "Create Directory” option working maybe next upgrade.

Maxien pa$=192
MaxLen (i$=192

FindScreen 0
{$=ASLFileRequest$("test” pa$ fi$,"s?.bb",0,0,640,256)
Kis

NPrint {$
Else

NPrint "failed"
Endif

MouseWait

Function: ASLFontRequest

Syntax: ASLFontRequest (enable flags)

The ASL Font Requester is also pretty useful. The flags parameter enables the user to modify
the following options:

#pen=1:#bckgrnd=2:#style=4:#drawmode=8:#fixsize=16

It doesn’t seem to handle colour fonts, no keyboard shortcuts so perhaps patching ReqTools
is an option for this one. The following code illustrates how a .fontinfo structure is created by a
call to ASLFontRequest (just like programming in a high level language man!).

Example:

Blitz User Issue 5 19

NEWTYPE fontinfo
name.s
ysize.w
style.b:flags.b
peni.b:pen2:drawmode:pad
End NEWTYPE

FindScreen 0
#f fontinfo= ASLFontRequest(15)

¥ of
NPrint tfiname
NPrint *fiysize
NPrint *tfipen
NPrint *fipen2
NPrint *fidrawmode
Else
NPrint "cancelled"
Endlf

MouseWait

Function: ASLScreenRequest

Syntax: ASLScreenRequest (enable flags)

Those who are just getting to grips with 2.0 and above will find this command makes your
programs look really good, however | haven't got time to explain the difficulties of developing
programs that work in all screen resolutions (what are ya?).

#width=1:#height=2:#depth=4:#overscan=8:#scroll=16

NEWT YPE .screeninfo
id.l
width.|
height.|
depth.w
overscan.w
autoscroll.w
bmapwidth.|
bmapheight.|

End NEWTYPE

FindScreen 0
ts¢.screeninfo=ASLScreenRequest(31)

¥sc
NPrint *sciwidth " " 2sciheight,” " tscidepth

Else .

NPrint “cancellad"

Endif

MouseWait

20 Blitz User Issue 5

The New GadTools Library
(#mygadtoolslib=141)

GadTools is a 2.0 and greater extension to the operating system that gives the Amiga
programmer a few extra enhancements to create juicy user interfaces with. Instead of listing
each as a separate command this issue I'll just add a brief description and a relevant taglist
to each of the 12 gadgets.

You are allowed both standard gadgets and GadTools ones in the same window, of course
id clashes must be avoided and unlike standard gadgets, gadtools gadgets are attached to
the Window after it is open with the AttachGTList command.

GTButton GTList#,id,x,y,w,h, Text$,flags

Same as Blitz2's TextGadget but with the added fiexibility of placing the label Text$ above,
below to the left or right of the button (see flags).

GTCheckBox GTList#,id x,y,w,h, Text$,flags

A box with a check mark that toggles on and off, best used for options that are either
enabled or disabled.

GTCycle GTList#,idx,y,w,h, Text$,flags, Options$

Used for offering the user a range of options, the options string should be a list of options
separated by the | character eg. "HIRES } LORES } SUPER HIRES"

GTinteger GTList#,id,x,y,w,h, Text$,flags,default

A string gadget that allows only numbers to be entered by the user.

GTListView GTList#,id x,y,w,h, Text$,fiags,list()

The ListView gadget enaables the user to scroll through a list of options. These options
must be contained in a string field of a Blitz2 linked list. Currently this string field must be
the second field, the first being a word type.

GTMX GTList#,id x,y,w,h, Text$,flags, Options$

GTMX is an exclusive selection gadget , the Options$ is the same as GTCycle in format,
GadTools then displays all the options in a vertical list each with a hi-light beside them.

GTNumber GTList#,idx,y,w,h, Text$,flags,value

This is a readonly gadget (user cannot interact with it) used to display numbers.
GTPalette GTList#id xy,w,h, Text$,flags,depth

Creates a number of coloured boxes relating to a colour palette,

GTScroller GTList#,id x,y,w,h, Text$,flags, Visible, Total

A prop type gadget for the user to control an amount or level, is accompanied by a set of
arrow gadgets.

Blitz User Issue 5 21

GTSlider GTList#,id x,y,w,h, Text$,fiags,Min,Max

Same as Scroller but for controlling the position of display inside a larger view.
GTString GTList#,id,x,y,w,h, Text$,flags,MaxChars

A standard string type gadget

GTText GTList#,id,x,y,w,h, Text$,flags, Display$

A read only gadget (see GTNumber) for displaying text messages.

The parameters x,y,w,h refer to the gadgets position and size, the Text$ is the label as
referred to above. The flags field is made up of the following fields:

LEFT=1 ;positioning of the optional gadget label Text$
RIGHT=2

ABOVE=4

BELOW=8

#_IN=$10

#_High=$20 ;highlight

#_Disable=$40 ;turned off
#_Immediate=$80 ;activate on gadgetdown
#_BoolValue=$100 ;checkbox on
#_Scaled=$200 ;scale arrows for slider
#_Vertical=$400 ;make slider/scroller vertical

Statement: AttachGTList

Syntax: AttachGTList GTList#, Window#

The AttchGTList command is used to attach a set of GadTools gadgets to a Window
after it has been opened.

Statement: GTTags

Syntax: GTTags Tag,Value [, Tag,Value...]

The GTTags command can be used prior to initialisation of any of the 12 gadtools
gadgets to Rreset any relevant Tag fields. The following are some useful Tags that can
be used with GTTags:

stag=$80080000

sGTCB_Checked=stag+4 ; State of checkbox
sGTLV_Top=stag+5 3 Top visible item in listview
sGTLV_ReadOnly=stag+? ;Set TRUE if listview is to be ReadOnly
sGTMX_Activesstag+ 1 3 Active one in mx gadget
sGTTX Text=stag+ 11 3 Text to display
sGTNM_Number=stag+13 ; Number to display
sGTCY_Aclive=stag+15 ; The active one in the cycle gad
sGTPA_Color=stag+17 ; Palette color
sGTPA_ColorOffset=atag+18 ; First color lo use in palette
sGTSC_Top=stag+21 } Top visible in scroller
sGTSC_Total=stag+22 ; Totalin scroller area
sGTSC_Visiblesstag+23 ; Number visible in scroller
sGTSL_Level=atag+40 ; Slider level

22 Blitz User Issue 5

sGTSL_MaxLevelLen=stag+41 ; Max length of printed level
sGTSL_LevelFormat=stag+42 ;* Format string for level
sGTSL_LevelPlace=stag+43 ;* Where level should be placed
sGTLV_ Selected=#tag+54 ; Set ordinal number of selected
#GTMX_Spacing=stag+61 ;* Added to font height to

All of the above except for those marked * can be set after initialisation of the Gadget using the
GTSetAttrs command. The following is an example of creating a slider gadget with a numeric
display:

$="%2ld":GTTags #GTSLLevelFormat,&f$,#GTSLMaxLevelLen 4
GTSlider 2,10,320,120,200,20,"GTSLIDER",2,0,10

Function: GTGadPtr

Syntax: GTGadPtr (GTList#,id)
GTGadPtr returns the actual location of the specified GadTools gadget in memory.

Statement: GTBevelBox

Syntax: GTBevelBox GTList#x,y,w,h,flags

GTBevelBox is the GadTools library equivalent of the Borders command and can be used to
render frames and boxes in the currently used Window.

Statement: GTChangeList

Syntax: GTChangelist GTList#,id [,List()]
GTChangeList must be used whenever a List attached to a GTListView needs to be modified.

Call GTChangelList without the List() parameter to free the List, modify it then reattache it with
another call to GTChangelList this time using the List() parameter.

Statement: GTSetAttrs

Syntax: GTSetAttrs GTList# id [, Tag, Value...]

GTSetAttrs can be used to modify the status of certain GadTools gadgets with the relevant Tags.
See GTTags for more information on the use of Tags with the GadTools library.

Blitz User Issue 5 23

TITLE:
RELEASE DATE:
PUBLISHER:
NUM TRACKS:
VEHICLES:
CUSTOMISED CARS: YES
MODEM CONNECT: YES

MAX PLAYERS:
MINIMUM MEM

SKIDMARKS
22nd Nov. 1993
Acid Software
12

4

4
1Mb Amiga

