
INFORMATION AND SUPPORT FOR BLITZ BASIC 2 USERS WORLD WIDE

ISSUE 5, June 1993
\~ --
~ .., ~S\V

f]
6\.-\1l- .AlI'c"

~.' -....... a:l \,~
-- . ~ -~~
_ I.(}P

I _

~
--... -~

---.--

WOW, 40+ new commands for beta
testing and some serious demos
including documented source code!
Who cares if it's 6 weeks late?

lJ3&~ll{JlN
rt'l8!lft @fli'fli'Jl~lftQQQ

More gossip from the St Kevins Arcade office of Acid
Software & Vision Software ...

Up in St Kevins Arcade things have been as crazy as ever.
Vision Software are looking to blow everyone out with Seek
and Destroy a game which I can say makes another
helicopter game released this year look like a heli-tour of
Wimbledon common.

SkidMarks is shaping up well with Andrew spending even
more time at the office than up at Auckland University
where he's supposedly a full time student. Our ray tracing
efforts are looking really nice, the packaging is pretty much
sussed and it's now time to finish the 12 tracks promised for
final release. Wo, wouldn't it be nice for the first Blitz2
commercial game to hit the top ten?

The CD32 has arrived and has been fully tested with the
entire CD collection (music that is). The controller is
awesome with no less than 7 buttons plus joypad and the
buster chip is going to get one hell of a workout over the
next few weeks.

Favourite CD of the month goes to Shihad's CHURN, a
local kiwi group which we all hope are going to kick some
butt overseas.

Speaking of kicking butt, Blitz User's should look out for
Amiga Format issues 51 and 52. With this sort of exposure
we're hoping to pronounce a certain A**S PRO and
accompanying compiler out of contention for Amiga
language sales this XMas. However we need PO material
to keep the reputation alive so come on everyone, anything
will do as long as it's different!

2 Blitz User Issue 5 I

2

Editorial 4
From the Minister of Finance. programming
and Export affairs comes the current state of

tg
the Acid nation.

Programming a Commodity 5
Thomas Boerkel outlines

Blhz U .. r ie • programming a Commodity in Blitz2 jUJlcalionofAcid
Software.

Q : Roger's Beginners Column 7
Duplicalion of Ible Roger delves intp number systems ::r::.::-. for beginners and Simon adds a alideaeand
p"?grlIII1IIincIuded cheats chart which he thinks
III !hie magazine

everyone should learn off by heart. may be uaed In
any size. lhape or
fonn;

Acid Software NEW COMMANDS
takes no Some 50 new commands for Blitz2 188poneIJiily for
lhe reIabiIIy of programmers ::=::lnlhla
magazine. .

Windows Library Additions 11
Editor

Simon Arm8Irong

~
Gadgets Library Additions 13

ArlDlr.ctor Screens Library Additions 14
RodSmilh

Palette Library Additions 15
ForwardaJI
~i0n8.
advertising and

~
Mlsc New Commands 16 COIT8tIpCIf1den 10:

ACID SOFTWARE DISPLAY LIBRARY 17 10 SlK8111n8
Arcade
Karangahape Rd

ASL LIBRARY 19 AucIdIind
NewZeallnd

'ax:84·9-358-1158
GADTOOLS LIBRARY 21

Yo BlitzUsers! Well BUMS is
lale, vel)' late! Sorry, even now
most of the new commands
haven't got full error checking
and the docs are a little rough.
We'll just call this a beta
testing issue so don't go geUing
upset cos things don't work
properly. Just calmly fill out a
bug report and send/fax/post it
my way.

OK so what do you get to lest?
The new display library is
coming together nicely, it's a
hit different than how slices
work but an improvement I
think overall. If you have not
already got it together with
slices I'd wait for better
documentation before having a
crack with the new display
commands.

For applications development
there is new support for both
GadTools and ASL requeslers.
It seems pretty stable at present
but once again these new
commands are still in the beta­
lest catagory.

It's been enjoyable work
adding all the extra stuff and
hopefully you'll be able to use
it to create some decent
software. Although we don't
demand that Blitz2 be
mentioned on any releases
developed with it we would
appreciate the publicity. It is in
everyone's interest that Blitz2
sells well and Acid Software
keeps paying it's bills so go on
give us a credit in your next
PO/commercial release.

Speaking of paying the bills,
our best wishes go out to
Commodore leading up to
Christmas. If they pull through
the next few months by
shipping megatons of AGA
machines the new year could
offer us all some real

opportunities for creative
projects.

The best news of course is
C032, we'll be releasing ACID
1 before XMas which will
include an awesome AGA
version of SkidMarks,
Defender (the controllers come
with 6 buttons!!!) Insectoids2
and more. This confirms of
course the existance of a
complete set of C032
developer commands for
Blitz2. These with a special
cable, HO CD emulation
drivers and our special bootCO
will mean Blitz2 might well
indeed be responsible for the
biggest revolution in CD
development tools ever. Hell,
we might even charge a royalty
of US$3 per disk too (just
kidding).

Other future enhancements for
Blitz2 include Oopsi support
(slowly working my way
through my RKM :), a linker,
another hack at a 3D
environment, superbitmap
windows, a new Intuitools
program, hmmm better stop ...

A big hi goes out to the
AcidSoftware master
distributors, we're slowly
developing a cohesive world
wide marketing plan for BB2,

4 Blitz User Issue 5

at present we have on board:

Germany: Tom & Falk
phone02217710922fax=0940

UK: Benoit Varasse
phone/fax 071 4824066

OZ: Roy Hurley
phone/fax 042 281 489

USA: Dave Maziarka
phone 608 257 9OS7

Once we start shipping decent
quantities per month in each
region we will be helping to get
BUGs started (Blitz User
Groups). The BUGs will take
over most of the support
including BBS support and
distribution of BUMs (Blitz
User Magazines). Keeping with
the spirit of things I would also
hope that BUGs can operale as
PO Libraries and also gather
contributions for BUMs. Each
BUG will get 2 pages in future
BUMs and we'll get some
competitions between BUGs
going to get evel)'one fired up.

Anyway, I'll get BUM6 out
before XMas so everyone
knows what's happening for
1994, promise!

SIMON

~[j@)!J1J[?@WiJWiJtJ[j7JfI' @
©@ -!JYi]@©[J7J

Whst Ie 8 Commodity?

Before AmigaOS 2.0, you had to write your own
custom input handler and "link" it to the input.device
if you wanted to react on several input-events.
Sometimes this method caused problems when
many programs created such handlers. There also
was a lack of transparency and control for the user.
Starting with AmigaOS 2.0, Commodore created a
standard for programs which act on input-events.

The new commodities. library controls all those
programs (called "Commodities") and helps the
programmer with several useful functions. The
control-program "Exchange", which can be found in
your Workbench 2.xl3.x:ToolslCommodities drawer,
shows all running Commodities and information
about them. The user can enable/disable a
Commodity, force it to open/close its window and
terminate it.

Almost all programs which act on input-events can
be implemented as a Commodity. Input-events are
keystrokes, mouse moves, mouse clicks and some
other ones that are less important. Some examples
for programs which can and should be implemented
as a Commodity are: Key translators, program­
launchers (for example Shell-popup),
mouseblankers, screenblankers, screen/window­
lools ...

Whal a Commodily has 10 do:

Commodities should have the following tooltypes:
CX PRIORITY=x
CX=POPUP=YESINO
CX POPKEY=keystroke

The last two only apply to Commodities that can
open a window.

Commodities have to react on messages from
Exchange. If the user tries to start the Commodity
again (while it is already running), the new started
should shutdown itself immediatly. The already
running one will receive a "UNIQUE"-message and
should then do something, normally it will popup its
window. Commodities should be as small as
possible because they stay always in memory. They
should only act on input-events of their interest to

by Thomas Boerkel

keep CPU-usage small. One exceptional type of
Commodity is a screenblanker. This one is
interested in all kinds of input-ewllls.

How to lHogram 8 Commodity

To program a Commodity, you have to install
some objects. The main object is called
"Broker". This object is linked to the
Commodities-handler which is linked in the
input-stream. The Broker must have a message­
port, where it gets messages from Exchange and the
convnodities.Hbrary. Other objects are:

FllterObJecte:fiher inputeventsof your choice
SenderObJecta:send messages to ports
TnlnalateObjecta:translale/modify events.
CuatomObJecta:an other kinds of objects.

Messages from Exchange have to be sorted out and
the required action has to be taken.

1. Test Commodity with popup-window
.> Tranalator
/

Broker -> Filter .>
\
.> Sender

The Broker sends all input-events to the Filler. The
Filter sorts out one special keystroke and gives it to
the Translator, which translates it to nothing (input­
event Is eliminated). The Filler also activates the
Sender, which sends a message to a specific
message-port. This can be and is often the same as
the Brokers port. The lihering, translating and sending
Is done by the cornmodities.library without the need
for the Commodity to do something. Actually the
Commodity sleeps until the Sender sends it the
message. Then it performs its action, in this example
pope up its window.

2 Mousflblank", with config-window.
.> Tl'llnelator
I

Broker .> Filter 1 .>
I \
I .> Sender 1

I
.> Filter 2·> Sender 2

Filter lISender 1ITransiator do the Bame as in
Example 1. They intonn the Commodity when it has to
open its window and kill the input-event (keystroke)

IBlitz User Issue 5 5

from the inputstream. Fiber 2 activates Sender 2 on
mousemoves. Sender 2 sends a message to the
Commodity, which then triggers its timer for
mouseblanking.

3. Funtion-Ksy program with config-window
-> Tranalator

I
Broker -> Filter 1 ->

1 \

1 -> Sander 1
1
1 -> Flit., for "F1" -> Tranetator for "F1"
1 -> Flit., for "F2" -> Tranalator for "F2"
1 -> Filter for "F3" -> Tranelator for "F3"

Filter 1/Sender 1ITransiator do the same as in
Example 1. They inform the Commod~y when it has
to open its window and kill the input-event
(keystroke) from the inputstream. For each F-key is a
Filter and a Translator installed. The Filter activates
the Translator if the speoifio key is pressed. The
Translator translates the keystroke to a series of
input-events (keystrokes). So pressing "F1" could
bring out the string "Oi,. or something like that.
Please note that the Translator needs a number of
chained input-events in reversal(l) order. There is a
oomfortable funotion in Amiga.lib "InvertStringO"
which oould do this, if it oould be used In Bfllz2. But
unfortunately this isnt possible in the ourrent version
of BlitzBasic so you have to build your own ohain of
input-events.

4. ScrBsnblankllT + config-window + blankksy
-> Tranal.tor 1
I

Broker -> Filter 1 ->
1 \
1 -> Sander 1
1
1

1

-> Trsnelator 2
I

1-> Filter 2 ->
1 \

1 -> Sander 2
1
-> Sender 3

Filter 1/Sender 1ITransiator 1 do the sarna as in
Example 1. They inform the Commodity when it has
to open its window and kill the input-event
(keystroke) from the inputstream. Filter 2/Sender
2ITranslator 2 are necessary for the blankkey. If the
blanker gets a message from Sender 2 it has to
blank at once. Sender 3 is directly connected to the
Broker. This means that it sends a message to the
port for every input-event, beoause a screenblanker
is interested in almost every kind of input-everll. The
screenblanker has to seleot whloh action to do on
which input-event. Normally only soreenblankers
have to look after every Input-event. All other
Commodities usually are only interested In speoial

6 BlitzUserlssueSI

input-everlls. So the blanker oan receive messages at
the Brokers message-port from all 3 senders and from
Exchange.

On the BUMS coverdisk you should find the documented
sources to BlitzBlank (full-featured soreenblanker) and
TestComm (simply a test with popup-window and key­
translation for the F1-key).

Parts of special interest in BIitzSIanks source:

WB-atartup-handllng: BlitzBlank does not use
"WBStartup", but does lis own WB-startup-handling to
be able to get its tooltypes. Look at the start of
BlitzBtank to see how the WBMessage is got, and at the
end of the main program to see what a program with its
own wb-start-handllng has to do at the end (hey, Simon,
\l\lhal about gelling toolypes with Biz-commands?).

Getting the tooltypas: At the start of BlitzBlank, it gets
its too.ypes with FindToolTypes_O.

Screenmoderequester: The inoluded prooedure
"Soreenreq" gets the possible soreenmodes from your
maohlne and displays a soreenmoderequester with
GadTools-gadgets. It uses the global long variables
"modeld", "width", "height", "depth".

GadTools-GUI: BlitzBlanks window is full of different
kinds of GadTools-gadgets. Look at the subroutines
"winona and "gadgets" to see how thai works. Preparing
an image for a GadTools-gadget: The drawer-gadget's
Image is prepared In the subroutine "dolmagedata" and
freed in "freelmagedata".
Writing tooltypas to Icon: BlltzBlank is able to set its

own toolypes with the current settings if the user clioks
on the SAVE-gadget. Look at the subroutine "write""
\l\lhich does this.
Using the ASL-fllersqueater: BlitzBlank displays the

ASL-fHerequester when the user presses <HELP> in the
path-gadget or clicks on the drawer-gadget. The
requester is displayed with the subroutine "aslfilereq".
USing EasyRequesters: In certain cases, BlitzBlank

displays an EasyRequest. This is done in the subroutine
"requester" .

Reading and writing conflg-data: The subroutines
"readconfig" and "writeoonfig" handle the
"BB.modules.config" file. These are just the same
routines as in the modules, but in B~tzBlank theyre done
\/\lith OS-routines.

Setting up the Commodity: The subroutine
"docornmalr sets/resets the Commodity-objects.

Killing the Commodltye oblects: The subroutine
"kilcomm" deletes al Commodity-objects.

Finding the available modules: The subroutine
"findmodules· searches with MatchNext() from OOSASL
in the module-directory.
Handling an exec.llbrary-lIat: An exec-list is needed

for the ListView-gadget of modules. The subroutines
"initlist·, "addallnodes· and ·freeallnodes· handle this
list.

Hi again and welcome to the second of the
beginners tutorials, this issue we will be
covering NUMBER SYSTEMS

Rrstly, I'm gonna take some of the rap for the
lateness of BUM #5 I've been a trifle lazy
getting my stuff in to Simon, so sorry folks,
still better late than never

This topic NUMBER SYSTEMS is actually
quite advanced and you'll find many a BASIC
programmer who has no concept of them
whatsoever, however as with last month if you
want to REAllY understand programming,
you'll want to know these so ONWARD

(1) WHAT A COMPUTER IS, HOW
COMPUTERS COUNT, WHAT MEMORY IS
AND WHAT NUMBER SYSTEMS WE
CONVERSE WITH A COMPUTER IN.

Phew Few techie words in that title eh? I
have never seen a programming article that
covers these topics first which is a pity as
unless you understand how computers store
information and how to retrieve and
manipulate it then you wont ever FUllY
understand programming.

What a computer is:

A computer is a collection of millions of
interconnected switches, these combinations
of switches can do all sorts of flash things but
the fund em ental of All computers, from
calculators to main-frames is that they only
understand 2 things. ON and OFF

So basically this mega-expensive machine
you shelled out on is no more advanced than
the light switch across the room, were all the
tricky things you can do with a computer
comes in with the fact that a computer can
switch things FAST and in different
combinations, However from a programmers
point of view we need a convenient way to
describe weather something is ON or OFF
and the simplest way is to use the number 1
for ON and 0 for off

1 =ON
O=OFF

This is called the Binary number system

The number system we use in everyday life is
the DECIMAL number system (base 10), this
system is used as we have 10 fingers and its
those we used to count with, however to
understand the basics of programming we
need to learn BINARY (base 2) DECIMAL
(base 10) we already know and
HEXADECIMAL (base 16)

Whats a binary number?

Well to start you thinking heres a table with
Binary numbers on the left and their decimal
equivilents on the right from 0 to 10:

DEC BIN

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010

Pretty Blzzarre huh? Well at least it looks that
way until I tell you that all you have to do to be
able to do Decimallbinary conversion Is to add
numbers and double numbersl ie:

32 I 16 I 8 I 4 I 2 I 1 Decimal numbers

1 I 0 I 1 I 1 I 0 I 1 Binary Number

Ok so lets examine that table:

First thing to note is that the '%' character in
front of the binary number is just how
programmers specify that the digit Is in binary

Blitz User Issue 5 7

ie: lOis the number lOin decimal
% lOis the number 2 in decimal

Ok now lets go back to the table, remember
I told you all you had to do was be able to
add and double well heres why, the top
level of the table starts at the right at 1 and
doubles (or goes to the power of 2) at each
step to the left ie:

1
1'2
2'2 =
4'2 =
8'2 =
16'2 =

1
2
4
8
16
32 etc etc etc

Right, so that covers the doubling, now the
next level down is the binary number. As
you can see the little holes below the
decimal numbers either have a 1 (ON) or 0
(OFF) in them. If the holes are ON then that
means the decimal figure above is part of
the resultin\} decimal number if the hole is
OFF then it Isn't so in the above example

%101101 = in decimal
32+8+4+1 = 45 decimal

Ok so draw yourself a copy of table 2 and
using the knowledge you now have calulate
the binary numbers for:

a) 32 b) 13 c) 24 d) 5 e) 64

If you have any problems just read through
the example again until it 'clicks'

Ok, if you have done your sums (just like
your back at school) then these are the
answers
a)%100000 b)%1101 c)%11000
d)%101 e)%111111

Ok, now if we extended that table by
doubleing our decimals you can see that by
each position we add to the left doubles the
maximum possible value we can represent

ADVANCED: This question is designed to
get you guys really thinking for yourselves, I
want you to try and work out the number
250 in binary, using common sense and the
information above you hopefully will be able
to do it.

ANSWER: You had to create more
columns, you had to create eight columns
so the answer looked like this:

8 Blitz User Issue 5)

250=128+64+32+16+8+2

/1~81 ~ l:if 1116 1 ~ I ~ I ~ I J/
so 25~hll111010

Right, so you can see so you can work out
any number In binary, after a while you will
be able to work out quite a few binary
numbers in your head so keep practising,
until you can do it mentally, check it using
tables.

Ok now work out 32987928437098274 in
Binary •• Just kidding

HEXADECIMAL

Now the only other number system you
need to know is Hexadecimal. As discussed
before binary is Base 2 Decimal Is Base 10
and Hexadecimal is Base 16 (ie Decimal +
Hexa) Most of you will know that Hex
means 6 so 10+6= 16.

It's at this point that we come to a rather
interesting problem, thus far we have only
had to represent number systems with a
base lower than 10 now that we have a
base above 10 we need to invent some new
number symbols and here they are

A = 10
B = 11
C = 12
D = 13
E = 14
F = 15

So there it is Hex values range from 0 to F
and just as we preceeded a binary number
with a '%' sign, we preceed a hex number
with a '$' sign. Here are some Hex
numbers: $lFAB, $FF, $FACE, $234DE

So how do we translate from decimal to hex
and vic a versa well the way I do it involves
converting the number to binary Inbetween.

PROB: To translate the number 182 in
decimal to its hexidecimal value

ANSWER: Firstly convert 182 to Binary
(%10110110), then we convert from Binary
to Hex. The important part to understand
here is that hex (base 16) can represent the
numbers 0 to 15 before you havtl to do a
carry over to the next column.

The next bit to realise is that we can represent
the numbers 0 to 15 in binary in 4 bits ie:

181 4 1211 1

1 1 1 1 1 1 1 1 1 %1111=15=$f

So by dividing our binary number into a series
of 4 bit segments we can work out our hex
value ie: 182 In binary is %10110110. separate
into 4 bit segments: 1011 & 0110 and then
convert these 4 bit segments back to Hex ($0 -
$F) which gives $B6.

This may seem rather long winded (IT ISII) but
you'lI soon be able to do numbers like that in
your head. and as you'lI find out at the end of
this lession there is a REAllY EASY way to do
this stuff :) Ok now lets convert from
hexidecimal to decimal Its basically the same
process in reverse.

PROB: Convert the number $FA In hexidecimal
to decimal.

ANSWER: Arst convert the Hex value to binary
So $FA splits into 2 lots of 4 bits %1111 &
%1010.

Now convert this 8 bit number to decimal Ie:

I 118 1 614 1 ~ 1116 1 ~ 1 ~ 1 ~ 1 Jl
So $Fa=128+64+32+16+8+2=250.

~f you do bigger nU!'lbers and they don't split
Into even lots of 4 bIt segments its no problem
just split them into 4 bit segments (allways
starting at the rightlll) and work out your values
then just work out your last value with whatever
bits are left over ie:

%1101011101 =>%11 0101 1101 =>$35D

So that's number systems. were now going to
RO into why we use these number systems and
I m going to blither on about how this relates to
last months article. but before I do remember I
promised you a really easy way of working all
this out?

Simply use the Calculator option in the Blltz2
compiler menu this will allow to enter a number
in any base Osut prefix It with % or $ if its binary
or hex) click on the number system you want
the answer to and Voila there is your answer
now before you lynch me for boring you to

death with stuff you didn't need to know. YOU
DO NEED TO KNOW THIS. next month when
we stop aU this boring theory and get into some
actual BLITZING you will know why until
then <puts on best Arnold Schwartznegger
voice> 'TRUST ME· ..•..•

last month I did a paragraph about signed and
unsigned numbers and ended up just telling
you to believe me. I'm now going to show you
why variables only hold up to certain numbers
and why. THIS is one of the reasons why
understanding number systems is necessary to
understand programming. Arst a quick recap if
you remember there are 3 basic types of sizes
a compter understands (blitz adds a few of Its
own but they are stili based on these three
types. they are.)

.b=BYTE=8bits

.w=WORD=16bits

.l=lONG=32 bits

Now last month I said a unsigned BYTE can
hold from 0 to 255 THIS is why

O=%OOOooOoo->Smailest value 8 bits can hold
255=% 11111111->largest value

Now if we use SIGNED BYTES the computer
needs a way of telling If the values Is pOSitive
or negative. it does this by setting the most
significant bit (thats techie talk for the one on
the extreme left) to on If the valuels NEGATIVE

THIS MEANS. that the maximum value you
can store is HALVED because that top bit is no
longer available for your number and as you
know every bit you add to a number doubles its
capacity so taking one away halves it so as an
example here are the answers to a binary
value for a UNSIGNED and SIGNED byte
%10000001 as a unsigned byte equals 129
%10000001 as a signed byte equals-1

So now you see why in a byte you can
represent either UNSIGNED 0 - 255 or
SIGNED -128 to +128 The same is true for
word and long word values I wont demonstrate
them. but It is the case. Well that's it for
another month. next month we do a tiny bit of
theory on truth tables. and then get into basic
programme flow control and Into some REAL
PROGRAMME WRITING. Until then. keep on
hammering away yourselves. and if you write
something then SEND IT OVER THE WATER
to us here in NZ.

ROGER

IBlitz User Issue 5 9

$00 0 WlOOOOOOO $40 84 .. 'MoO 1 000000 $80 128 %10000000 $CO 192 Ii. %11000000
$01 1 %00000001 $41 85 A 'MoO 1 000001 $81 128 %10000001 SCI 183 AI %11000001
$02 2 'Mo00000010 $42 118 8 'MoO 1 000010 $82 130 %10000010 $C2 194 %11000010
$03 3 %00000011 $43 87 C %01000011 $83 131 %10000011 $C3 195 %11000011
$04 4 %00000100 $44 l1li 0 %01000100 $84 132 %10000100 $C4 1911 A %11000100
$05 5 %00000101 $45 89 E 'MoO 1 0001 01 $85 133 %10000101 $05 197 It %11000101
$011 8 'MoOOOOOll0 $411 70 F %01000110 $811 134 %10000110 see 1911 1£ %11000110
$07 7 %00000111 $47 71 G %01000111 $87 135 %10000111 SC7 1991 %11000111
$011 8 'MoOOOOlooo $411 72 H %01001000 $811 138 %10001000 see 200 %11001000
$09 9 'MoOOOOl001 $49 73 I %01001001 $89 137 %10001001 see 201 %11001001
$OA 10 %00001010 $4A 74 J %01001010 $&A 138 %10001010 $CA 202 %11001010
$08 11 %00001011 $4B 75 K %01001011 $88 139 %10001011 sea 203 %11001011
SOC 12 %00001100 $4C 711 L %01001100 sac 140 %10001100 sec 204 %11001100
$00 13 %00001101 S4D 77 M %01001101 $80 141 %10001101 $CD 205 %11001101
$OE 14 %00001110 $4E 78 N %01001110 SSE 142 %10001110 see 2011 %11001110

··M···~·t·· .. ·····eMM······II···~····9····tltjM-M·····.···t·ti·······at~MAA·······g··=··· ···:Ng~~
$11 17 %00010001 SSI 81 Q %01010001 $91 145 %10010001 SOl 2091 %11010001
$12 18 'MoOOOl0010 $52 82 R %01010010 $92 1411 %10010010 SD2 210 %11010010
$13 19 'MoOOOl00ll $53 83 S 'MoOl0l0011 $93 147 %10010011 $03 211 %11010011
$14 20 'MoOOOl0l00 $54 84 T %01010100 $94 1411 %10010100 SD4 212 %11010100
$15 21 'MoOOOl0l0l SS5 115 U %01010101 $95 149 %10010101 $05 213 %11010101
$18 22 'MoOOOl011 0 sse l1li V 'MoOl010110 $911 150 %10010110 $011 214 %11010110
$17 23 'MoOOOl0111 SS7 87 W %01010111 $97 151 %10010111 S07 215 • %11010111
$18 24 'MoOOOllooo sse l1li X 'MoOl0l1000 $911 152 %10011000 $011 218 1/1 %11011000
$19 25 %00011001 $59 89 Y 'MoOl0ll00l $99 153 %10011001 $09 217 Q %11011001
$11. 28 %00011010 $SA 90 Z 'MoOl011010 $&A 154 %10011010 SOl. 218 ~ %11011010
$18 27 %00011011 S5B 91 l 'MoOl0ll011 S9B 155 %10011011 SOB 2111 %11011011
$IC 28 'MoOOOlll00 $5C 82 'MoOl0ll100 sac 1511 %10011100 $DC 220 %11011100
$10 28 'M000011101 $SO 83 I %01011101 $9D 157 %10011101 $OD 221 %11011101
$IE 30 %00011110 SSE 84 A %01011110 seE 1511 %10011110 $DE 222 ~ %11011110

··m···~~·········;mv~······II···;l···T"····~l~AMM·····m···l·;·······al~MMA·······=··~··t··:t·t~~
$21 33 I %00100001 $81 97 • 'MoOllOOOOI SAl 181 I %10100001 SEI 225 • %11100001
$22 34 • %00100010 $82 88 b 'MoOl100010 SA2 1112 $ %10100010 $E2 2211 , %11100010
$23 35 , %00100011 $83 89 c 'MoOl1ooo11 $A3 183 £ %10100011 $E3 227 I %11100011
$24 38 $ %00100100 $84 100 d %01100100 $M 184 • %10100100 $E4 228 I %11100100
$25 37 % %00100101 $85 101. %01100101 $AS 185 ¥ %10100101 SE5 228 , %11100101
$211 38 !- %00100110 $811 102 f %01100110 $All 1l1li I %10100110 $E8 230 • %11100110
$27 39 %00100111 $87 103 II %01100111 SA7 187 • %10100111 SE7 231 ~ %11100111
$28 40 (%00101000 $88 104 h %01101000 $All 1l1li %10101000 SE8 232 i %11101000
$28 41 l %00101001 $89 105 I %01101001 $All 1l1li Ii> %10101001 SE8 233 , %11101001
S2A 42 %00101010 $&A 1011 I %01101010 $AA 170 • %10101010 SEA 234 • %11101010
S2B 43 + %00101011 $88 107 II 'MoOll0l011 SAB 171 • %10101011 $EB 235 • %11101011
S2C 44 %00101100 sac 108 I 'MoOll0ll00 SAC 172 %10101100 SEC 238 I %11101100
$2D 45 . %00101101 $80 109 m 'MoOl101101 SAD 173 - %10101101 $EO 237 I %11101101
S2E 48. %00101110 $8E 110 n 'MoOll01110 SAE 174 ~%10101110 SEE 238 f %11101110

··~···K··~····~1~AMc\······II···H~··-:-···=1·1¥l.W·····II···H;··· .. ··algWMM·······Wo···~~··~···~t·H~kAM
$31 411 1 %00110001 $71 113 q %01110001 $81 1 n t %10110001 $Fl 241 1\ %11110001
$32 50 2 %00110010 $72 114 r %01110010 $82 1711 • %10110010 SF2 242 «) %11110010
$33 51 3 %00110011 $73 115. %01110011 SB3 179 • %10110011 SF3 243 6 %11110011
$34 52 4 %00110100 $74 1111 I 'MoOl110100 SB4 180 %10110100 $F4 244 II %11110100
$35 53 5 %00110101 $75 117 u %01110101 SB5 181 e %10110101 $F5 245 II %11110101
$38 54 8 %00110110 $711 118 V %01110110 $B8 182 , %10110110 SFII 2411 «I %11110110
$37 55 7 %00110111 $n 118 w %01110111 $87 183 • %10110111 $F7 247 + %11110111
$38 58 a %00111000 $711 120 x 'MoOl111000 $B8 184 %10111000 $Fa 2411 • %11111000
$38 57 II %00111001 $79 121 Y %01111001 $811 ·185 • %10111001 SFII 249 II %11111001
S3A 58: %00111010 $71. 122 z %01111010 $SA 188 • %10111010 SFA 250 II %11111010
$38 59 %00111011 $78 1231 %01111011 SBB 187 • %10111011 SF8 251 0 %11111011
$3C 80 < %00111100 $7C 124 %01111100 $BC 1l1li 1,4%10111100 SFC 252 0 %11111100
$30 111 - %00111101 $70 125 %01111101 SBD 1l1li ~%10111101 SFO 253 %11111101
$3E 82 ,. %00111110 $7E 1211 - %01111110 $BE 190 %%10111110 $FE 254 II %11111110
$3F 83 ? %00111111 $7F 127 %01111111 SBF 191 L %10111111 $FF 255 9 %11111111

$100 2511 %0001 0000 0000 $1000 40911 'MoOOOl 0000 0000 0000
$200 512 %0010 0000 0000 $2000 11192 %0010 0000 0000 0000
$300 7l1li %0011 0000 0000 $3000 122811 %0011 0000 0000 0000
$400 1024 %0100 0000 0000 $4000 111384 %0100 0000 0000 0000
SSOO 1280 %0101 0000 0000 $5000 204110 'MoO 1 0 1 0000 0000 0000
$800 1538 %0110 0000 0000 $11000 245711 %0 11 0 0000 0000 0000
$700 1792 %0111 0000 0000 $7000 211872 %0111 0000 0000 0000
$800 2048 %1000 0000 0000 $11000 327118 %10000000 0000 0000
$900 2304 %1001 0000 0000 $9000 38884 %1001 000000000000
$AGO 25110 %101000000000 $1.000 409110 %1010000000000000
$800 2818 %1011 0000 0000 $8000 45058 %1011000000000000
$COO 3072 %1100 0000 0000 $COOO 49152 %11000000 0000 0000
SDOO 3328 %11010000 0000 SDOOO 53248 %1101 00000000 0000
SEOO 35114 %1110 0000 0000 SEOOO 57344 %111000000000 0000
$FOO 3840 %111100000000 $FOOO 81440 %1111 00000000 0000

TIIS PAGE WAS GBiERATED and PAGESET IN 12 alMUTESI SImon

Due to severe time mis-management example code and explanations that make any sense of
the following commands have had to be delayed until next issue (yeh sure Simon).

Some examples have been included in the examples drawer of BUMS's cover disk. Also
source code to the new GadTools and Display libraries have been included in the libsdev
drawer for those capable of making any sense of them.

Window Library Additions

Statement: Window
Syntax: Window Window#,x,y,width,height,flags,title$,dpen,bpenf,gadgetlist#f,bitmap#JJ

The Window library has been extended to handle super bitmap windows. SuperBitMap
windows allow the window to have it's own bitmap which can actually be larger than the
window. The two main benefits of this feature are the window's ability to refresh itself and the
ability to scroll around a large area "inside" the bitmap.

To attach a BitMap to a Window set the SuperBitMap flag in the flags field and include the
BitMapl to be attached.

Statement: PositionSuperBitMap
Syntax: PoaitionSuperBitMap x,y

PositionSuperBitMap is used to display a certain area of the bitmap in a super bitmap window.

Example:

I
I super bitm.p ex.mple
I

widlh .. 320:heillhl .. 200 Bit~ap 0,widlh,heillhl,2:
Circlet 160,100,160,100, 1:Box 0,0,width-1 ,heillhl-1 ,3

FindScreen 0

,Iwo sliders for Ihe borders (see new lIadllet flailS next palle)

PropGadllet 0,3,-8, $18000+4+8+64,1,-20,8
PropGadllel 0,-14,10,$11000+2+ 16+ 128,2,12,-20

,reportinll 01 mousemoves means we can Irack Ihe proPlladllel as il is moved

AddlDC~P $10
SizeLimils 32,32,widlh+22,heillhl+20
Window 0,0,0,100, 100,$1489,"HELLO·, 1,2,0,0

Blitz User Issue 5 11

Gosub drawsuper

Repeal
ev.l=WailEvenl
II ev=2 Then Gosub dosize
If ev=$20 Then Gosub domove

Unlil ev=$200
End

dosize:
SelHProp O,1,posxlwidlh,lnnerWidlhlwidih
SelVProp O,2,posylheighl,InnerHeighllheighi
Redraw O,1:Redraw O,2:Golo drawsuper

domove:
Repeal:Gosub drawsuper:Unlil WaiIEvenl<>S10:Relum

drawsuper:
ww=widlh-lnnerWidlh:hh=heighl-hnerHeighl
posx=QUmilCHPropPoICO,1)*Cww+ 1),0,1'11'1)
pos y=QUmilCVPropPoiCO ,2)*Chh+ 1),0 ,hh)
PosilionSuperBillv1ap posx,posy
Relum

Statement: GetSuperBitMap & PutSuperBitMap
Syntax: GetSuperBitMap & PutSuperBitMap

After rendering changes to a superbitmap window thebitmap attached can also be updated
with the GetSuperBitMap. After rendering changes to a bitmap the superbitmap window can
be refreshed with the PutSuperBitMap command. Both commands work with the currently
used window.

Statement: WTitle
Syntax: WTitle windowtitJe$,screentitle$

WTitle is used to alter both the current window's title bar and it's screens title bar. Useful for
displaying important stats such as program status etc.

Statement: Close Window
Syntax: CloseWindow Window#

CloseWindow has been added for convenience. Same as Free Window but a little more
intuitive (added for those that have complained about such matters).

Statement: WPrintScroll
Syntax: WPrintScroll

12 Blitz User Issue 51

----------------------_ ... _--

,

WPrintScroli will scroll the current window upwards If the text cursor is below the bottom of
the window and adjust the cursor accordingly. Presently WPrlntScro/l only works with
windows opened with the gimmeOO flag set (#gimmezerozero=$400).

Statement: WBlit
Syntax: WBlit Shape#,x,y

WBlit can be used to blit any shape to the current window. Completely system friendly this
command will completely clip the shape to fit Inside the visible part of the window. Use
GimmeZeroZero windows for clean clipping when the window has tiUe/sizing gadgets.

Statement: BitMapto Window
Syntax: BitMaptoWindow Bitmap#, Window#f,srcx,srcY,destx,desty,wid,heightj

BitMaptoWindow will copy a bitmap to a window in an operating system friendly manner
(what do you expect). The main use of such a command is for programs which use the raw
bitmap commands such as the 2D and Blit libraries for rendering bitmaps quickly but require a
windowing environment for the user inyerface.

Functions: EventCode & EventQualifier
Syntax: EventCode & EventQualifier

EventCode returns the actual code of the last Event received by your program,
EventQualifier returns the contents of the Qualifier field. Of use with the new GadTools library
and some other low level event handling requirements.

Gadget Library Additions
Five new flags have been added when defining gadgets in Blitz2. The first four are for
attaching the gadget to one of the windows borders, the GZZGADGET flag is for attaching the
gadget to the "outer" rastportllayer of a gimme zero zero window.

#RIGHTBORDER
#lEFTBORDER
#TOPBORDER
#BOTTOMBORDER
HGZZGADGET

$1000
$2000
$4000
$8000
$10000

PropGadgets have been upgraded to take advantage of the 2.0 "newlook" whenlif available.

Statement: Toggle
Syntax: Toggle GadgetList#,ld f,On/Off}

The Togggle command in the gadgellibrary has been exlended so it will actually loggle a
gadgets status if the no On 10ft parameter is missing.

Blitz User Issue 5 13

Screen Library Additions

Statement: CloseScreen
Syntax: CloseScreen Screen#

CloseScreen has been added for convenience. Same as Free Screen but a little more
intuitive (especially for those that have complained about such matters (yes we care)).

Statement: HideScreen
Syntax: HideScreen Screen#

Move Screen to back of all Screens open in the system.

Statement: BeepScreen
Syntax: BeepScreen Screen#

Rash specified screen.

Statement: MoveScreen
Syntax: MoveScreen Screen#,deltax,deltay

Move specified screen by specified amount. Good for system friendly special effects.

Statement: Screen Tags
Syntax: ScreenTaga Screen#, TitleS 1& TagListj or If, Tag,Data} ... }

Full access to all the Amiga's new display resoutlons is now available in Amlga mode by use
of the Screen Tags command. The following tags are of most interest to Blitz2 programmers:
(see autodocsl

HLeft=$80000021 :HTop=$80000022:HWidth=$80000023:#Height=$80000024
#Depth=$80000025:#DetaiIPen=$80000026:# BlockPen=$80000027
HTitle=$80000028:#Colors=$80000029:#ErrorCode=$8000002A
HFont=$8000002B:#SysFonl=$8000002C:HType=$8000002D:#BitMap=$8000002E
HPubName=$8000002F:HPubSig=$80000030:#PubTask=$80000031
HDisplayID=$80000032:#DClip=$80000033:/IOverscan=$80000034
HObsolele 1 =$80000035

HShowTitle=$80000036:HBehind=$80000037:# Quiel=$80000038
HAutoScroll=$80000039:#Pens=$8000003A:#FUIIPalette=$8000003B
HColorMapEntrles=$8000003C:#Parenl=$8000003D:#Draggable=$8000003E
HExclusive=$8000003F

14 Blitz User IssueS

IISharePens=$80000040:#BackFill=$80000041:11 Interleaved=$80000042
IIColors32=$80000043:IIVideoControl=$80000044
IIFrontChild=$80000045:#BackChild=$80000046
IIUkeWorkbench=$80000047:IIReserved=$80000048

,
I open super wide screen with overscan set for smooth horizontaf scroll
; for 2.0 and above with amigafibs.res in resident

._BitMap,,$S000002E:._Overscan,,$S0000034:._Width,,$SOOOO023:.j-ieight,,$S0000024

BitMap O,12S0,512,2:Circlef 320,25S,25S,1

Screen T all5 O:'T EST",._BUMap,Addr BitMapCO),._Overscan,1,._Width,S40,._Heillht,512

·vp.ViewPort=ViewPorlCO)

While JoybCO)::O
VWail
·vpIDxOffset,,-SMouseX,-SMouseY
ScrollVPorl_ .vp

Wend

Palette Library Additions
The Palette library has been modified in BUM5 for two reasons. Firstly, it was impossible to
perform custom fades using two palettes as the Use Palette command affected the current
Slice or Screen. Also with the advent of the Display library the extra properties of the Use
Palette command (copy colors to current Slice or Screen) became unwanted.

The ShowPalette command has been added to replace the above functionality removed from
the Use Palette command. Also, for compatability reasons NewPaletteMode On is used for
enabling the above modifications (default is off).

Statement: ShowPalette
Syntax: ShowPalette Pa/ette#

ShowPalette replaces Use Palette for copying a palette's colours to the current Screen or
Slice.

Statement: NewPaletteMode
Syntax: NewPaletteMode On / Off

The NewPaletteMode flag has been added for compatibility with older Blitz2 programs. By
setting NewPaletteMode to On the Use Palette command merely makes the specified palette
the current object and does not try to copy the colour information to the current Screen or
Slice.

Blitz User Issue 5 15

Mise ADDITIONS

Statement: SortList
Syntax: SortList Arrayname(j

The SortList command is used to rearrange the order of elements in a Blitz2 linked list. The
order in which the items are sorted depends on the first field of the linked list type which must
be a single integer word. Sorting criteria will be extended in future releases.

Statement: LoadFont
Syntax: LoadFont IntuiFont#,Fontname.font$, Y size {,style}

The loadFont command has been extended with an optional style parameter. The following
constants may be combined:

#underlined= 1
#bold=2
#italic=4
#extended=8 ;wider than normal
#colour=64 ;hmm use colour version I suppose

Statement: SpriteMode
Syntax: Sprite Mode mode

For use with the capabilities of the new Display library SpriteMode is used to define the width
of sprites to be used in the program. The mode values 0, 1 and 2 correspong to the widths 16,
32 and 64.

Function: Exists
Syntax: Exists (FileName$)

Exists actually returns the length of the file, if 0 the file either does not exist or is empty or is
perhaps not a file at alII Hmmm, anyway the following poke turns off the "Please Insert Volume
Blah:" requester so you can use Exists to wait for disk changes:

Poke.l Peek.lCPeek.lC4l+27Slt184,-1

Statements: Runerrson & RunerrsofT
Syntax: Runerrson & Runerrsoff

These two new compiler directives are for enabling and disabling error checking in different
parts of the program, they override the settings in Compiler Options.

16 Blitz User Issue 51

.'

The New Display Library
(#displaylib=143)

The new display library is an alternative to the slice library. Instead of extending the slice
library for AGA support a completely new display library has been developed.

Besides support for extended sprites, super hires scrolling and 8 bitplane displays a more
modular method of creating displays has been implemented with the use of CopUsts. CopUsts
need only be initialised once at the start of the program. Displays can then be created using
any combination of CopUsts and most importantly the CreateDisplay command does not
allocate any memory avoiding any memory fragmenting problems. The new display library is
for non-AGA displays also.

Statement: InitCopList
Syntax: InitCopList CopList#,ypos,height, type,sprites, colors, customsl widthadjustj

InitCopUst is used to create a CopUst for use with the CreateDisplay command. The ypos,
height parameters define the section of screen. Sprites, colors and customs will allocate
instructions for that many sprites (always=81) colors (yes, as many as 2561) and custom
copper instructions (to be used by the new DisplayFX library currently in devlopment).

The width adjust parameter is currently not implemented, for display widths other than standard
see the DisplayAdjust command. The following constants make up the type parameter, add
the number of bitplanes to the total to make up the type parameter.

Hsmoothscroll=$10
Hlores=$OOO
Hloressprites=$400
#fmodeO=$OOOO

Hdualplayfield=$20
Hhires=$100
Hhiressprites=$800
Hfmodel=$1000

Hextrahalfbrite=$40
Hsuper=$200
Hsupersprites=$cOO
#fmode2=$2000

Hham=$80

#fmode3=$3000

For displays on non-AGA machines only HfmodeO and Hloressprites are allowed. More
documentation, examples and fixes will be published soon for creating displays.

Statement: CreateDisplay
Syntax: CreateDisplay CopList#lCopList# .. }

CreateDisplay is used to setup a new screen display with the new display library. Any number
of CopUsts can be passed to CreateDisplay although at present they must be in order of
vertical position and not overlap. CreateDisplay then links the CopUsts together using internal
pOinters, bitmaps, colours and sprites attached to coplists are not affected.

Statement: Display BitMap
Syntax: DisplayBitMap CopList#,bmap{,x,y} [,bmap{,x,y]J

The DisplayBitMap command is similar in usage to the slice libraries' show commands.
Instead of different commands for front and back playfields and smooth scroll options there is
only the one DisplayBitMap command with various parameter options. With AGA machines,
the x positioning of lores and hires cop lists uses the fractional part of the x parameter for super
smooth scrolling.The CopUst must be initialised with the smooth scrolling flag set if the x,y
parameters are used, same goes for dualplayfield.

Blitz User Issue 5 17

Statement: DisplaySprite
Syntax: DisplaySprite CopList#,Sprite#,X, Y,Sprite Channel

DisplaySprite is similar to the slice libraries Show Sprite command with the added advantage of
super hires positioning and extra wide sprite handling, See also SpriteMode,

Statement: DisplayPalette
Syntax: DisplayPalette CopList#,PaIBtte# [,coloroffsBtj

DisplayPalette copies colour information from a Palette to the CopUst specified,

Statement: DisplayControls
Syntax: DisplayControla CopUst#,BPLCON2,BPLCON3,BPLCON4

DisplayControls allows access to the more remote options available in the Amiga's display
system. The following are the most Important bits from these registers (still unpublished by
Commodorel*O@GYU&")

BPLCON2

15 *
14 ZDBPSEL2 which bitplanll for ZO
13 ZDBPSEL1
12 ZDBPSELO
11 ZDBPEN maklls abovlI bp hit ZO
10 ZDCTEN ZO is bit#15 of colour
09 KILLEHB *
08 RDRAM=O *
07 SOGEN I sync on grlllln
06 PF2PRI H playfillid 112 priority
05 PF2P2 H playflBldispritll priority
04 PF2Pl
03 PF1PO
02 PF1P2
01 PF1Pl
00 PF1PO

! = Don't touch
H -See standard hardware reference manual
* - controHed by display library

BPLCON3

BANK2 * activll colour bank
BANKI *
BANKO *
PF20F2 col-offsllt for p1ayfillld 2
PF20Fl
PF20FO
LOCT 'palllttll hii/o nibblll modll

SPRESl * spritlls /'llsolution
SPRESO*
BRDRBLANK bordllr is black
BRDNTRAN bordllr hits ZD

ZDCLCKEN ZO= 14Mhz clock
BRDSPRT SpritllS in bordllrsl
EXTBLKEN wo blank outpull

ZD - any reference to ZD is only a guess Oust Bold my genlock)

Statement: Display Adjust

BPLCON4

BPlAM7 xor with bi~/anll
BPlAM6 OMA for a tllring
BPlAM5 IIffactivlI colour
BPlAM4 look up
BPlAM3
BPlAM2
BPlAMl
BPlAMO
ESPRM7 h~h ordsr color
ESPRM6 0 Slit for IIvsn
ESPRM5 spritlls
ESPRM4
OSPRM7 ht ordllr color
OSPRM6 0 lit for odd
OSPRM5 sprites
OSPRM4

Syntax: DiaplayAdjuat CopList#,fBtchwid,ddfstrt,ddfstop,diwstrt,diwstop

Temporary control of display registers until I get the width adjust parameter working with
InitCopUs!. Currently only standard width displays are available but you can modify the width
manually (just stick a screwdriver in the back of your 1084) or with some knowledge of
Commodores AGA circuitry,

Anyway, before I start going on about why they COUldn't just give us byte per pixel instead of 8
dam bitplanes (CD32 to the rescuel) see the cover disk for more information",

18 Blitz User Issue 51

The New ASL Library
(#myasllib=80)

Our policy until now has been that we would only place emphasis on 1.3 compatible
commands unless of course they had to do with AGA. Then again I don't even have a
LoadWB in my startup-sequencel So instead of complaining I spent an uncomfortable week
adding the following 2.0 above specific commands to Blitz2.

And as for those with 1.3 and want new ROMS? BURN BABY BURN ...

Function: ASLFileRequest$
Syntax: ASLFileRequest$ (TitleS, Pattmarne$, FilenameSlPattem$) lx,y, w,h})

The ASL File Requester is nice. Except for the highlight bar being invisible on directories you
get to use keyboard for everything, stick in a patternS to hide certain files and of course you
get what ever size you want. I made it call the Blitz2 file requester if the program is running
under 1.3 (isn't that nicel). There is a fix that patches the ReqTools file requester but that
doesn't have the date field.

I couldn't get the Save-Only tag or the ·Create Directory" option working maybe next upgrade.

MaxLen pat= 192
MaxLen lit= 192

FindScreen 0

I$=ASLFileRequestl('~esl" ,pat ,lit ,"I? .bb",O ,0 ,640 ,256)

II It
NPrinll$

Else
NPrinl "Iailed"

Endll

MouseWail

Function: ASLFontRequest
Syntax: ASLFontRequest (enab/e_ Hags)

The ASL Font Requester is also pretty useful. The flags parameter enables the user to modify
the following options:

#pen= 1 :#bckgrnd=2:#style=4:#drawmode=8:#fixsize= 16

It doesn't seem to handle colour fonts, no keyboard shortcuts so perhaps patching ReqToois
is an option for this one. The following code illustrates how a .fontinfo structure is created by a
call to ASLFontRequest Oust like programming in a high level language manl).

Example:

Blitz User Issue 5 19

NEWTVPE .fontinfo
name.s
ysize.w
style.b:flags.b
pen 1.b:pen2:drawmode:pad

End NEWTVPE

FindScreen 0

If .fontinfo= ASLFontRequest(15)

• If

Else

NPrinllflname
NPrinl 'flysize
NPrinl 'flpen 1
NPrint 'flpen2
NPrinllfldrawmode

NPrint nc anc elled"
Endlf

MouseWaii

Function: ASLScreenRequest
Syntax: ASLScreenRequea. (enable_ flags)

Those who are just getting to grips with 2.0 and above will find this command makes your
programs look really good, however I haven't got time to explain the difficulties of developing
programs that work in all screen resolutions (what are ya?).

#Width= 1 :#height=2:#depth=4:#overscan=8:#scroll= 16

NEWTVPE .screeninfo
id.l
width.l
heighU
depth.w
overscan.w
autoscroll.w
bmapwidth.l
bmapheighU

End NEWTVPE

FindScreen 0

"S C.S creeninfo=ASLScreenRequest(31)

• "SO
NPrint Isclwidth." "."sclheighl." "."scldepth

Else
NPrinl·cancelled"

Endlf
MouseWait

20 Blitz User IssueSI

The New GadTools Library
(#mygadtoolslib=141)

GadTools is a 2.0 and greater extension to the operating system that gives the Amiga
programmer a few extra enhancements to create juicy user interfaces with. Instead 0' Usting
each as a separate command this issue I'll just add a brief description and a relevant tag list
to each of the 12 gadgets.

You are allowed both standard gadgets and GadTools ones in the same window, of course
id clashes must be avoided and unlike standard gadgets, gadtools gadgets are attached to
the Window after it is open with the AttachGTUst command.

GTButton GTList#,id,x,Y,w,h, Text$,Hags

Same as Blitz2's TextGadget but with the added flexibility of placing the label Text$ above,
below to the left or right of the button (see flags).

GTCheckBox GTList#,id,x,y,w,h, Text$,Hags

A box with a check mark that toggles on and off, best used for options that are either
enabled or disabled.

GTCycie GTList#,id,x,Y,w,h, Text$,flags,Options$

Used for offering the user a range of options, the options string should be a list of options
separated by the I character ego "HIRES} LORES } SUPER HIRES"

GTlnteger GTList#,id,x,Y,w,h. Text$,Hags,default

A string gadget that allows only numbers to be entered by the user.

GTListView GTList#,id,x,y,w,h, Text$,Hags,list{j

The ListView gadget enaables the user to scroll through a list of options. These options
must be contained in a string field of a Blitz2 linked list. Currently this string field must be
the second field, the first being a word type.

GTMX GTList#,id,x,Y,w,h, Text$,Hags,Options$

GTMX is an exclusive selection gadget, the Options$ is the same as GTCycie in format,
GadTools then displays all the options in a vertical list each with a hi-light beside them.

GTNumber GTList#,id,x,Y,w,h, Text$,flags, value

This is a readOnly gadget (user cannot interact with it) used to display numbers.

GTPalette GTList#,id,x,y,w,h. Text$,Hags,depth

Creates a number of coloured boxes relating to a colour palette,

GTScrolier GTList#,id,x,y,w,h, Text$, flags, Visible, Total

A prop type gadget for the user to control an amount or level, is accompanied by a set of
arrow gadgets.

Blitz User Issue 5 21

GTSlider GTList#,id,x,y,w,h, TextS,lIags,Mln,Max

Same as Scroller but for controlling the position of display inside a larger view.

GTString GTList#,id,x,Y,w,h, TextS,lIags,MaxChsrs

A standard string type gadget

GTIext GTUst#,id,x,y,w,h, TextS,lIags,DisplayS

A read only gadget (see GTNumber) for displaying text messages.

The parameters x,y,w,h refer to the gadgets position and size, the Text$ is the label as
referred to above. The flags field is made up of the following fields:

II LEFT =1 ;posltionlng of the optional gadget label Text$
II-RIGHT=2
II-ABOVE=4
II-BELOW=8
nN=$10
II-High=$20 ;highlight
II-Olsable=$40 ;turned off
1I=lmmediate=$80 ;activate on gadgetdown
II BoolValue=$100 ;checkbox on
II-Scaled=$200 ;scale arrows for slider
II=Vertical=$400 ;make sllder/scroller vertical

Statement: AttachGTList
Syntax: AttachGTUat GTList#, Window#

The AttchGTlist command Is used to attach a set of GadTools gadgets to a Window
after it has been opened.

i

I Statement: GTTags -------1 Syntax: GTIaga Tag, Value (. Tag, Valus .. .)

The GTIags command can be used prior to Initialisation of any of the 12 gadtools !
gadgets to preset any relevant Tag fields. The following are some useful Tags that can I··

be used with GTIags:

alag='80080000 ·1'
aGTCB_Checked"alag+4 I Siale 01 checkbox
aGTLV_Top ... lag+5 I Top visible ilem in lislview
.GTLV _ReadOnly...lall+ 7 J Sel TRUE 1/ listview is 10 be ReadOnly
aGT~K.Aclivea.l.g+ 10 J Active one in mx g.dgel
aGTTIC. exl".I.g+ 11 I Texllo displ.y
.GTN •• CNumber •• I.g+ 13 J Number 10 displ.y
aGTCY""'ctive .. al.g+15 J The .ctlve one In Ihe cycle g.d
.GTP"_Color.al.g+ 17 J p.lelle color
.GTP"_ColorO//sel ... I.g+ 18 J Firsl color 10 use in p.leHe
.GTSC_ToC ... I.g+21 J Top visible In scroller
aGTSC_To .1.al.g+22 J Tol.1 In scroller .re •
• GTSC_Visible ... I.g+23 J Number visible in scroller
.GTSL_Level ... I.g+40 I Slider level

22 Blitz User Issue 51

IGTSLj,4axLeveILen=ltagt41 ; Max length of printed level
IGTSLj..eveIFormat=ltagt42 ;* Format string for level
IGTSLj..eveIPlace=ltlgt43 ;* Where level should be placed
,GTLV _Selected=ltlgt54 ; Set ordinll number of selected
,GTM>CSplcing=ltlgtS1 ;* Added to font height to

All of the above except for those marked· can be set after initialisation of the Gadget using the
GTSetAttr. command. The following is an example of creating a slider gadget with a numeric
display:

f$="O/02Id":GTTag. NGTSlleveIFormat,&f$,IfGTSlMaxlevellen,4
- GTSlider 2,10,320,120,200,20,"GTSLlDER",2,O,10

Function: GTGadPtr
Syntax: GTGadPtr (GTList#,id)

GTGadPtr returns the actual location of the specified GadTools gadget in memory.

Statement: GTBevelBox
Syntax: GTBevelBox GTUst#,x,Y,w,h,flags

GTBevelBox is the GadTools library equivalent of the Borders command and can be used to
render frames and boxes in the currently used Window.

Statement: GTChangeList
Syntax: GTChangeli.t GTUst#,id (,Ust() J

GTChangelist must be used whenever a list attached to a GTlistView needs to be modified.
Call GTChangelist without the listO parameter to free the list, modify it then reattache it with
another call to GTChangeUst this time using the UstO parameter.

Statement: GTSetAttrs
Syntax: GTSelAttr. GTList#,id l Tag, Valus ...)

GTSetAttrs can be used to modify the status of certain GadTools gadgets with the relevant Tags.
See GTTag. for more information on the use of Tags with the GadTools library.

Blitz User Issue 5 23

TITLE: SKIDMARKS
RELEASE DATE: 22nd Nov. 1993
PUBLISHER: Acid Software
NUM TRACKS: 12
VEHICLES: 4
CUSTOMISED CARS: YES
MODEM CONNECT: YES
MAX PLAYERS: 4
MINIMUM MEM 1Mb Amiga

J.

