SMIXING ASM WITH
'0BJECT-ORIENTED ASM

T
i W

00LS FOR
PROFESSIONAL

oL
o A
e e e A

e R e
ot A

-
i

R
s :
R

CONTENTS e
VOLUME 15, ISSUE 3

FEATURES

ASSEMBLY LANGUAGE LIVES! 16
by Michael Abrash

Assembly language isn't the be-all and end-all of PC programming, but as Michael states,

it's sometimes the only game in town when performance or program size are importan,

ASSEMBLY LANGUAGE TRICKS OF THE TRADE 30
by Tim Paterson

Every programmer collects a personal bag of programming tricks. Tim's has been 13 years

in the making, and he shares some of his favorites with you.

68040 PROGRAMMING 38
by Stephen Satchell

The newest member of the 680x0 family provides some challenges for programmers at all

levels, particularly when it comes to caching.

HOMEGROWN DEBUGGING — 386 STYLE! 46
by Al Williams

Use the 80380’s hardware to debug your programs by including Al's assembly language

code to establish breakpoints,

MANAGING MULTIPLE DATA SEGMENTS UNDER

MICROSOFT WINDOWS: PART II 58
by Tim Paterson and Steve Flenniken

Last month, Tim and Steve presented a method for managing multiple data segments under

M5 Windows using the segment table. This month, they provide a sample Windows program

that puts the segfable library to work.

OBJECT-ORIENTED PROGRAMMING WITH ASSEMBLY LANGUAGE 66 DEPARTMENTS
by Randall Hyde
Randy makes a case that the object-oriented paradigm isn't completely the domain of EDITORIAL b
high-level programming languages. He believes that OOP techniques can be applied, and by Jonathan Erickson
are worth considering for ASM projects too. LETTERS 8
EXAMINING ROOM by you
)]
INSIDE WATCOM C 7.0/386 74 O s T s »
by Andrew Schulman
Andrew suspects that Watcom's C 7.0/386 has launched the opening salvos in a 32-bit 386 PROGRAMMER'S
development tool war. He also looks at how Novell has implemented the compiler for its CERVICES

C Network Cﬂmpﬂt‘[.-“'ﬁﬁﬁ. -

PROGRAMMER'S WORKBENCH D s 152

MIXED-LANGUAGE PROGRAMMING WITH ASM 84 ADVERTISER INDEX 153
by Karl Wright and Rick Schell where to go for more information

- As Karl and Rick point out, it's not only practical but often advisable to mix languages and on products
memory models in order to achieve the best results. Assembly language is a vital part of ,
this mix. PROGRAMMER'S

MARKETPLACE15

(0 L u M N S classified ads
PROGRAMMING PARADIGMS 122

by Michael Swaine
Lisp has been codified, gentrified, and now objectified, Michael looks at how the Common
Lisp data-type system underlies the object system, and how Lisp functions have been

extended to the object world.
| NEXT ISSUE

C PROGRAMMING 127 ST .
by Al Stevens If g,cau!ve thnks-:mtr:hll;:lg your head over]

' ~ : - - : tworks, you'll want t speci
TEXTSRCH, Al's text retrieval project, continues to grow. Now you can select and view one ;‘f:;‘;i;:m :;L: ﬂ?:?i: hj::nw:ﬁ?;f:;
of the files Hfmm within the TEXTSRCH program itself. He then uses this feature to explore vide the [ang-awiited codle bmlamientation
the CURSES function library. for our Rhealstone real-time benchmark,
STRUCTURED PROGRAMMING l 34 begin an in-depth examination of VGA, and
by Jeff Duntemann include D0J’s 1989 index.

There really were some neat ideas at last fall's Comdex, you just had to search them out.
Jeff describes the jewels he discovered, then delves into sets in Modula-2,

Dr. Dobb’s fournal, March 1990 3
200

E DI T 0 R [AL

Patent Letter
Suits

forest of fires, at least in respect to patenting algorithms. The first spark, if you recall, was a

letter from Ray Gardner, pointing out that the LZW algorithm was patented by Unisys back
in 1985 (see “Letters,” December 1989). Mark's response answered a few questions but raised
several more.

About the time we published Ray’s letter and Mark's reply, the U.S. Court of Appeals settled a
dispute between the U.S. Patent Office and Sharp Corporation in a case that revolved around Sharp’s
patent application for a voice-recognition circuit. The Patent Office had rejected Sharp’s original
application in part because they felt the circuit's only purpose was to execute an algorithm, And,
the Patent Office insisted, algorithms can't be patented because they are nothing more than
mathematical abstractions. Furthermore, the Patent Office felt that Sharp was trying to patent every
possible means of implementing the algorithm, not just the way it was used in this particular
voice-recognition circuit.

As it turned out, the Court of Appeals didn't agree with the Patent Office. The court said that an
algorithm can be safeguarded, at least as how it is used to describe a physical device (like a circuit)
or in terms of other functional equivalents of that algorithm.

To better come to grips with this issue, I called Charles Gorenstein, the Falls Church, Virginia
attorney who represented Sharp. Early in our conversation, Mr, Gorenstein stated that "a purely
mathematical algorithm is probably not patentable” but, he added, the specific methods of
implementing an algorithm are patentable. In other words, what is patentable is the method, not
the math. If someone developed a different circuit to execute Sharp’s voice-recognition algorithm,
that's fine and dandy. And apparently that's part of the basis of the Court of Appeal's decision.

Key to any patent grant is the concept of “new and unobvious,” an area that Mr. Gorenstein feels
the Patent Office has overlooked. Using a 1979 patent for spreadsheets as an example, he explained
that just about anyone with a ledger, a pencil, and some data would fill out the rows and columns
in much the same way as they would with an electronic spreadsheet. A ledger — and a spreadsheet —
is obvious, He therefore questions whether the bpﬁ,ﬂdshﬁt‘t patent should ever have been granted.
This question of “obvious"” raises another important issue. What may be unobuious to those in the
Patent Office may very well be obvious to technically sophisticated programmers like DD/ readers.

What all this leads up to is a letter I received from Bob Bramson, the Unisys patent attorney Mark
mentioned in his response. I won't give a blow-by-blow account of the letter, you can read it for
yourself on page 8, the first entry in this month's “Letters” section.

[will say that the letter is a politely worded clarification of Unisys's patent on the LZW algorithm,
with only a slight sense of the steel behind it, at least in reference to Unisys's intention of going
after infringers.

I'm sorry, but I still don't understand. It seems that if, as I think the court ruled, you can use
Sharp's algorithm to design a different voice-recognition circuit, you should be able to use Sharp’s
(or Unisys's or anyone else’s) algorithm for an entirely different purpose than it is used in the
original patent. That is, you should be able to use the LZW algorithm in a program that has nothing
to do with telecommunications or modems. This assumes, of course, that Unisys's patent is for the
modem and the algorithm as it helps define the modem. [agree with Mark. Unisys will indeed be
very busy tracking down programmers who have implemented some form of the LZW algorithm.

I'm all for any company, large or small, taking steps to protect R&D investments that give it a
competitive edge. But it's distasteful for large companies to threaten smaller outfits with litigation
that can’t be won in the courts, but can be outlasted by a large company with the resources to do
s0. Now I'm not in any way suggesting this is Unisys's ploy, nor does Mr, Bramson even hint at this,
it’s far too often the way the world works,

In his response to the letter that started all of this, Mark suggested that software developers who
intend on using patented algorithms (like LZW) in commercial products get some legal advice
before proceeding. Mr. Gorenstein seconded this, even to the point of suggesting that programmers
do a patent search prior to implementation. While this advice is sound and safe, it is also lengthy
and expensive, luxuries that software developers usually can't enjoy.

Today’s mail didn’t bring a letter from a lawf-r but it did include a letter from Dan Abelow, a
Newton, Massachusetts reader who specializes in analyzing me:rgmg technologies, and who,
coincidentally, proposes to write an article on “Enabling Patents.” He calls the topic a “blossoming
controversy [that] has failed to germinate positive suggestions” and, from what I can tell, he's
making a case that software patents may actually encourage fﬂﬂD‘.’EliDI‘l and invention. | don’t know
that T agree with him, but I'm curious enough to give him a call and find out what he has in mind.

ity oo

Jonathan Erickson
editor-in-chief

K i ark Nelson’s article on the LZW data compression algorithm (DD] October, 1989) sparked a

Dr. Dobb’s Journal, March 1990
201

L E T T ER S

Patented Algorithms

Dear DD,

In the “Letters” column of your De-
cember 1989 issue, Mark Nelson dis-
cusses U.S. Patent 4,558,302 entitled
“High Speed Data Compression and
Decompression Apparatus and Method.”
This patent was developed by Terry
Welch, a former Unisys employee, and
is owned by Unisys. According to Mr.
Nelson, 1 have been quoted as saying
that Unisys will “license the algorithm
for a one time fee of $20,000.” As a
concession to the modem industry, Uni-
sys has agreed to license the patent to
modem manufacturers for use in mo-
dems conforming to the V42.bis data
compression standard promulgated by
CCITT, for a one-time fee of $20,000.
This $20,000 license, however, is not a
general license under all applications
of our patent but is limited to the spe-
cific application discussed above.,

Responding to the second paragraph
of Nelson's remarks, Unisys is actively
looking into the possibility that a large
number of software developers may
be infringing one or more of our data
compression patents. We have only re-
cently become aware of these potential
infringers and the process of taking
action will take some time,

Unisys is happy to accept inquiries
from persons interested in acquiring a
license to U.S. Patent 4,558,302. If your
readers have any further questions, they
should contact Mr. Edmund Chung of
our licensing office, at 313-972-7114.

Robert S. Bramson

Unisys

Blue Bell, Penn.

Say It Ain’t So

Dear DD,

Dan W. Crockett’s assertion in the Janu-
ary 1990 DDJ “Letters” section that struc-
tured programming requires that each
functional node (or implementation
unit) have only a single parent is alarm-
ing, and damned difficult to program

8
202

in the real world. I think that he inter-
prets the abstract requirements of struc-
tured programming a little too literally
when it comes o coding.

As an example, consider a Pascal
function, which formats dollar amounts
for output. The function might take a
real dollar argument and translate it to
a“$unn,nunn, ... nnnan format, and
be declared as function DollarFmit(v :
real):string; The whole point of hav-
ing the function is that it can be called
from any procedure or function in a
program; if the dollar amounts are for-
matted incorrectly we can first check
io see if the error lies in DollarFmt,
because it is solely responsible for per-
forming the task.

This is structured programming: Break-
ing down a task into smaller and smaller
(andfinally, logically indivisible) subtasks.
Subtasks which perform similar or iden-
tical tasks can then be coded as a single
(probably parameterized) routine.

Mr. Crockelt wants program struc-
ture to be a B, Quad, or whatever tree,
which is fine, but reality demands that
the implementation be a threaded tree.
Under the Crockett scheme we would
be forced to write a separate DollarFmt
for each caller (AmowuntDue DollarFmi,
AmountPaid DollarFmt, ad nauseam)!
The resulting plethora of duplicate rou-
tines would produce a worse debug-
ging situation than Mr. Crockett thinks
he’ll have already — never mind the
maintenance nightmare,

The “single” restriction structured pro-
gramming is the requirement that a sin-
gle functional node not have more than
one entry point within if, which is to
say that all callers must enter through
the same door. [t is perfectly reason-
able for a routine to have more than
one caller — without multiple callers
there would be little reason for build-
ing a distinct procedure or function for
performing the task.

Going back to the DollarFmt exam-
ple: The structural decomposition of a
hypothetical bill printing task might be

F'rirlnt Bill
I | |
List Line ltems Calculate Interest Calculate Sum
Format I[ina [tem FD:I'I'F‘IEI: Interest Furm::lt Sum
Furmlat Amt Print |:'IIEIE'SI F‘r'rn'[I Sum
Print Ita:'n & Amt atc, a’ltﬂ.

It is (hopefully) obvious that “Format
Amt.” “Format Interest,"and “Format
Sum” should be programmed as calls
to a single formatting routine, even
though they are different tasks in the
abstract,

There are dangers in interpreting any

abstraction too literally. And there is
that other thing, in the word of Will
Rogers: “It's not what we don't know
that hurts, it's what we know that ain’t
50."

Brook Monroe

Durham, North Carolina

Locator Fix

Dear 1),

The listing of Mark Nelson's “Locate
tool” in the January 1990 issue has a
bug in the read_header_data proce-
dure: It occurs in his calculation of
image_size. The line:

image_size = (header file_
size_in_pages - 1) * 512

should be replaced with:
if (header.image_length_mod_512

image_size = header file_
size_in_ pages * 512;
clse
image_size = (header file_
size_in_pages - 1) * 512;

The bug occurs when the actual image
size is an even multiple of 512 bytes.
As an example, consider an image size
of 1526 (512 * 3). In this case,
header_ file_size_in_ pages would be
three and header.image_length_mod_
512would be zero. Mark's code would
produce an incorrect size of 1024 due
to the decrement of header file_size_
in_ pages.

[had the opportunity of stumbling
into this when writing a combination
EXE loader/relocator/unrelocator for
a non-DOS-based embedded control
system,

Thank you for your time and keep the
interesting articles like Mark's coming.

Bill Trutor

Holden, Mass.

Mark responds: Bill bas correctly iden-
tified a mistake in my program. I think
I might bave avoided this mental error
with better naming of structure mem-
bers. In any case, this is one of those
program evrors that occurs so infre-
quently (1 out of 512 links) that it can
be extremely elusive, so thanks to Bill
for pointing it out.

Data Structure Dream Machine
Dear DD,
In Jeff Duntemann’s column in the De-
cember 1989 issue of DIV, he men-
tioned his dream system under Win-
dows 386. I have a question about this.
I understand the languages and the
PageMaker part, but could he expand
(continued on page 12)

Dy. Dobb’s Journal, March 1990

L E T T E RS

(continued from page 8)
on using Paradox? Do 1 understand
him to mean that you use it to keep
track of details about your data struc-
tures? Sounds interesting; could he elabo-
rate?

Guy Townsend

CIS 73040,1671

Jelf’s response: Hate to be a spoilsport,
but mostly what I use Paradox for is to
keeh my various contact files a key-
stroke away. The notion of using a
real-relational database to manage the
gritty details of major development pro-
jecis is a good one, but the language
vendors are going to have to do the
integration between the tools and the
database. Some major vendors are in-
deed working on this, (still secretly)
and you ll be seeing the resulls in DD]
when they surface.

Intek Heard From

Dear DD,

From time to time you must hear from
disgruntled companies who feel that
they have suffered at the hands of one
of your writers performing a post-
mortem with an axe,

Knowing, however, that Al Stevens
is a venerable pilgrim to the hallowed
halls of Bell Labs and a proponent of
the object-oriented paradigm, we sup-
pose that his summarial execution of
our product was caused by a bit of
underdone potato.

In his November “C Programming”
column, just after explaining to his read-
ership that he was neither rigorous nor
controlled, he set about to describe the
available C++ compilers and transla-
tors available for DOS. Without rigor
or control he dismissed our Intek C++
product without evaluating the prod-
uct at all! He chose instead to fault an
example program that we provide with
our distribution of the AT&T translator.
This example program (which we sup-
ply the source to in the product distri-
bution) invokes the C preprocessor,
the C++ translator, and the target C
compiler in succession. We supplied it
to provide our customers with a con-
venient method of progressing from
source to executable if they were in-
voking from the command line. The
mentioned bug occurred only with DOS
3.3, and as with all software companies
that stand behind their product with
integrity, we supplied the fix to all of
our customers long before Al's column
went to print. Of course, Al didn't men-
tion that other translator products don't
ofter anything like this and certainly don't
supply the source to such a program.

Did Al mention that the near, far,
huge, pascal, fortran, and cdecl key-

12

words don't work with the AT&T distri-
bution or with some other translator
products but that they do with Intek
C++? No. Ever tried (0 use a third party
header file with some of these keywords
in it or try to link to a library, expecting
the results of these modifiers, Al

Did Al mention that if one tried to
compile any production size C++ source
modules with other products that they
would run out of memory? No. Maybe
he'd rather make sure that all of his
source files were less than 4K in size
and that he could only include three
or less header files.

Did Al benchmark the fact that the
only product from among the group
that he mentioned that will compile the
AT&T C++ source distribution is [ntek
C++? No. (That's AT&T’s definition of
the robustness of a C++ translator im-
plementation by the way.)

Please assure Al that Intek C++ will
continue to have a future in the PC
world. Our client list has many of the
Fortune 500 firms among it. We also
use our own product in providing fac-
tory automation applications to the ma-
jor workstation and computer manu-
facturers in the country.

We feel like you would feel if in a
review of magazines Dr. Dobb’s was
dismissed as not being a quality soft-
ware tools magazine because it sounds
like it should be a medical journal.

Mac Cutchins

Intek

Bellevue, Wash.

Al responds: My evaluation of Intek
C++ consisted at first of the seemingly
simple task of gelting it to compile the
hello.cpp program that comes with the
translator. “Hello, world, "nothing more,
right out of the box. That simple task
involved two days of frustration and
several phone calls to Intek.

The Intek technical support person
at first insisted that there was some-
thing wrong with my setup. The nature
of the bug — the translator worked ev-
ery other time— encouraged both of
us to believe that. The compiler failed,
I called, he made a suggestion, the
compiler worked. I hung up, the com-
piler failed, I called, and so on. One of
those times we changed operating sys-
tems, and the technical support person
conciluded that my copy of DOS 3.3
was the culprit, He must have remem-
bered that episode and subsequently
convinced you, Mr. Cutchins, but not
me. The bug was identical for DOS
Versions 3.0, 3.2, 3.3, and 4.0. Unider
3.1, the bug is different, and bello.cpp

Jjust never compiles. When [reported

these findings, your technical support
person, by now tired of hearing from

me, curtly announced that there must
be some problem, that it would get fixed,
goodbye, and thank you very much. If
you fixed that bug, I never heard abouut
it, before or after my column went to
print. Until now, that is. I puess as a
pesky magazine columnist with a free
review copy of your pricey product, I
don't rate an upgrade. Never once duir-
ing all those calls did Intek suggest that
I abandon the “example’ CPLUS pro-
gram and use the lower-level programs,
which I now see is the obvious solution.

In my opinion, Intek C++ is under-
packaged and over-priced. The skimpy
40-page spiral-bound manual devotes
only 10 pages to installing and using
the translator, has exactly two senterices
about using it with Turbo C, has some
critical typos (the C_COMPILER envi-
ronment variable is misspelled, for ex-
ample), and never lets on that the CPLUS
program is a mere example to be used
at one’s own risk. Intek C++ fails to
measure wup lo the standards of guality
that PC programmers bave come to
expect 1n their language products., My
assessment of your future in the PC
market was based on my view of the
cost and quality of the Intek C++ soft-
ware, documentation, and support and
of the expensive bardware/software foun-
dation necessary to use it. I stand by
that assessment. If you believe that In-
tek C++ has improved substantially since
my evaluation of it, I'll be pleased to
give it another look.

Round and Round We Go

Dear DI,

Recently I completed a graphics course,
s0 I read with interest the January issue
article by Robert Zigon dealing with
generation of circles. I found the article
to be a clear and well written exposi-
tion of the problem. However, any al-
gorithm based upon the parametric rep-
resentation of a circle must involve sig-
nificant overhead in the form of floating-
point calculations. A superior algorithm
developed by].E. Bresenham some
years ago avoids such overhead.

The Bresenham algorithm makes use
of the fact that screen coordinates are
integer valued, so it should be possible
to select the circle’s coordinates using
only integer arithmetic as well. Use of
only integer arithmetic is the key to the
efficiency of the algorithm. The algo-
rithm is used to advance along the pe-
rimeter of the circle, selecting the adja-
cent pixel which is nearest to the circle
al each step. Because of circular sym-
metry, it suffices to determine only one-
eighth of the circle using this tech-
nique,

An excellent derivation of the algo-

(continued on page 14)

Dr. Dobb’s Journal, March 1990
203

Tﬂﬂ!j FﬂE THE
FEUFESSIUH&!
Fﬁﬂﬁﬂm‘-ﬂﬁlfﬁ

Dr. Dobb's)=

PUBLISHER FPeter Hulchinson

LETTERS

EDITORIAL

EDITOR-IN-CHIEF Jonathan Erickson
MANAGING EDITOR Monica £. Berg
TECHNICAL EDITORS Michae! Floyd, Ray Valdes
EDITORIAL ASSISTANT Jfanna Custer
CONTRIBUTING EDITORS Al Stevens,

Jeff Duntemarnn, Martin Tracy, David Betz,
Tom Generedgrix, Andrew Schulman
COPY EDITORS Rboda Simmons,

Pamela Dillehay, Nan Fornal
EDITOR-AT-LARGE Michae! Sweaine

ART/PRODUCTION

ART/PRODUCTION DIRECTOR Larry L. Clay

ART DIRECTOR Michae! Hollister

PRODUCTION SUPERVISOR Amiy Stulman Lesovoy
TECHNICAL ILLUSTRATOR Linda Ann Clark
TYPOGRAPHERS Teresa Raines,

Margaret Anderson, Charlene Carpentier

COVER PHOTOGRAPHER Michael Carr

CIRCULATION

[MRECTOR OF CIRCULATION Maureen Kaminski
CIRCULATION MANAGER Randy Robertson
CIRCULATION PLANNING MANAGER Marny Saudr
DIRECT MARKETING MANAGER Andrea Weingart
NEWSSTAND MANAGER Sarah Forsman

DIRECT MARKETING COORDINATOR Francesca Davies
PROMOTION COORDINATOR Pawt Moore
FULFILLMENT COORDINATOR Anne fean

ADMINISTRATION

VICE PRESIDENT OF FINANCE Kate Deschamps
CONTROLLER Mary Collopy

CREDIT MANAGER Befty Arsene

ACCOLUNTING SUPERVISOR Renate Kernke

ACCOUNTS RECEIVABLE Wendy Ho
ACCOUINTS PAYABLE Ludnn Rocklewiiz

MARKETING/ADVERTISING

DIRECTOR OF SALES AND MARKETING

Karla Spormann

ADVERTISING COORDINATOR Laura Stack Pullen .
MARKETING ASSISTANT Sara Noab Ruddy
ACCOUNT MANAGERS see page 7152

MET PUBLISHING INC.

CHAIEMAN OF THE BOARD Oitmar Weber
DIRECTOR € F von Quadl

PRESIDENT Laird Foshay

VICE PRESIDENT OF PUBLISHING William F Howard
VICE PRESIDENT/GROUP PUBLISHER

Randall L. Stickrod

DR DOBES FOURNAL (USPS 3070900 = published monthly, ex-
cept semimenthly i December, hy M&T Publishing, Inc., 301
Galvestiom Dr, Redwood City, CA 94063, 415-360-3600, Second-
clazss postage paid at Redwood City ard at additional entry points

ARTICLE SUBMISSIONS: Scrdd manuscripts and disk {with article
and listings) to the editorial assistant 415-366-3600,

D0 ON COMPUSERYE: Tyvpe GO D],

DOy LISTING SERYICE: 003-8552-1599. Supports 300571 200, 2400
b, B-clara bas, no parity, 1-50op B Tvpe fstings (use lowercase)
At the login prormpt

SUBSCRIPTION: 52997 for 1 vear; 55097 for 2 years, Foreign
orders must be prepaid, including the additional postage Caic o
surfacet in 105, funds deawn on a US bank. Add $13 for surface
nail o all addresses e of the TS add $33 for aitmail 10 Canada
anch Mexioo: ar 332 for airlift to all other counthes.

POSTMASTER: Send address changes to e, Dobb s Jonrmal PO.
Box 501848, Boulder, CO B0322-0158. ISSN 1044-T89X

CUSTOMER SERVICE: For subscription orders, questions, and
clanges of address call wll-free 800-456-1215 (0.5, and Canada)
aor write O Dobhs forrnel, PO, Box 56188, Boulder, ©O 80322-
G188, For book/software orders call 800-533-4372 (in California
FH-390-20021,

FOREIGN NEWSSTAND DISTRIBUTOR: Worldwide Media Ser-
vice Inc., 115 E. 23rd 5t New York, Mew York 10010, 212-420-0588
FAX, 212-420)-1265.

Entine comtents copyright €1990 by MET Publish- hs
ing, Inc. unless otherwise noted one specific Audit
anticles. All rights reserved, 6 Bureau

204

(coniinued from page 12)
rithm is given in the text Computer
Graphics by Donald Hearn and M.
Pauline Baker (Prentice Hall, 1986). The
derivation depends only upon elemen-
tary algebra, but may require some-
what greater mathematical maturity due
to the notation used. The text also pre-
sents Pascal code for the algorithm.
Another reference, which gives a lim-
ited explanation and a C code implemen-
tation of the algorithm, but which does
not attempt to derive the algorithm, is
Graphics Programming in C by Roger
T. Stevens (M&T Books, 1988).

Joseph M. Hovanes Jr.

Pittsburgh, Pennsylvania

Forth Fan

Dear DD,

Here's 20 cents to fan the Flames of
T.S. Kuhn's book, The Structure of Sci-
entific Revolutions. It caused me 1o go
cold turkey re. the tube for three days.

Martin Tracy reaffirmed my belief that
Forth in its dialects offers the best pres-
ently available forum for discussion of
“discrete mathematics” and the founda-
tions of computing science. But I would
like to see his work in the form of a
bootable operating system and not a guest
under another commercial product.

[confess that my own present work,
“simpli-Forth,” which is strongly tied
to the 6502, still requires a fig-Forth
boot to get off the ground. Perhaps if |
work, [can learn enough about target
compilers to create my own boot codes.

It seems to me that small operating
systems with too-early emphasis on hid-
ing or transportability may not be in
the best interest of learners who seek
to know in detail how their computing
systems work. | would like to see small
Forth systems place the user in a pro-
gramming environment which makes
plain the processes of his machine.
That is why calls to DOS seem mis-
placed to me; I'd prefer that all of a
small Forth system be available to the
decompiler and user.

Would not a system for the program-
ming of “smart” peripherals be more
useful and general by omission of read-
only memory? One could imagine modi-
fied error-handling, perhaps by redi-
recting the error-message stream to the
calling device and transmitting a raise-
error-request o it. But 1 remain con-
vinced that the “smart” external should
be executing a standard and expand-
able Forth kernel, albeit a minimal one,
and that communication with it should
be in the form of a standard, inter-
preted input stream.

The user of such a device could then
load codes indicating how the forth-

coming data is to be handled, followed
by the commands to be executed and
the data (e.g., 80 PRINTLINE THE
QUICK BROWN FOX JUMPS OVER . . .).
At the end of such a session, some
command such as DONE would then
forget the loaded object-behavior back
to that formerly executing. Instead of
relying on ROM to make our machines
robust we would enter a new arena of
opportunity for flexibility. It is time for
a generation of peripherals which can
follow the lead and dance.

On another subject, Brodie encour-
ages us, “Use dumb words.” One of
the major differences between fig-Forth
and Forth-83 is in the use of the STATE
variable and its effect on words such

s ' and LITERAL. In the process of
learning to use STATE-sensitive words
correctly, I, too, have been hopelessly
confused from time to time. But the
fully interactive capabilities possible in
a modern Forth machine may require
STATE-sensitive behavior.

For this reason I chose to write SIF
(STATE @ IF) which may be used:

: TEST SIF COMPILE THEN DO-IT ;
IMMEDIATE

which will cause TEST to compile DO-
IT if compiling else execute it (COM-
PILE is not IMMEDIATE). Although this
example makes TEST equal to DO-IT,
more-useful examples can be drawn.
Another word might be ?COMPILE that
would combine the effects of SIF, THEN,
and IMMEDIATE and be used: : TEST
?COMPILE DO-IT ; so that all words
using ?COMPILE would automatically
be made IMMEDIATE.

“Use dumb words” is sound advice.
But some quite interesting capabilities
arise only when one uses correctly
written words with STATE-sensitive
behavior.

Jon W. Osterlund

Greeley, Colo.

DD)J

We welcome your comments (and Sug-
gestions). Mail your letters (include disk
if your letter is lengthy or contains code)
to DD}, 501 Galveston Dr., Redwood
City, CA 94003, or send them electroni-
cally to CompuServe 76704,50 or via
MCI Mail, ¢/oDD]. Please inciude your
name, city, and state. We reserve the
right to edit letters.

Dr. Dobb'’s Journal, March 1990

Assembly Language
Lives.

More Speed, Less Filling

Michael Abrash

here's an old joke that goes something like this:

Person #1: Help! My brother thinks he’s a chicken,and
[don't know what I should do.

Person #2: Have you told him the truth?

Person #1: [would, but I need the eggs.

Updated for the modern age of structured languages and
object-oriented programming, that joke would read:

Manager #1: Help! My programmers think assembly lan-
guage is a viable programming language, and I don’t
know what I should do.

Manager #2: Have you told them the truth?

Manager #1: 1 would, but I need the speed.

Assembly language beats everything else hands down
when it comes to performance — especially when program-
ming for the 80x86, where assembly language is wild, woolly,
and wondrous — yet it gets no respect. When you flat-out
need performance, there simply are no substitutes for as-
sembly language — so why doesn't anyone seem to love it?

Assembly Language Isn’t Cheap

Experts, pundits, and management types have been beating
the drums for the demise of assembly language for years.
There are many good reasons for wishing it dead. Com-
pared to compiled code, good assembly-language code is
harder to write, is more bug prone, takes more time to
create, is harder 1o maintain, is harder to port to other
platforms, and is more difficult to use for complex, multi-
programmer projects. That makes assembly language an
expensive, demanding, and time-consuming development
language. Given the realities of time to market, the relative
costs of good assembly language and high-level language
programmers, programmer turnover, and ever-increasing

Michael works on bigh-performance graphics software at
Metagraphics in Scotts Valley, Calif. He is also the author
of Zen of Assembly Language published by Scott, Foresman
& Co., and Power Graphics Programming, from Que.

16 Dr. Dobb’s fournal, March 1990
205

software complexity, it's neither surprising nor unreason-
able that most of the industry wishes assembly language
would go away.

Assembly language lives, though, for one simple reason:
Properly applied, it produces the best code of any language.
By far.

Assembly Language Lives

Don't believe me? Consider this. If the carbon-based com-
puter between your ears were programmed with as good a
compiler as Microsoft’s, then you'd generate much better
code in assembly language than does Microsoft C, because
you know vastly more about what you want your program
to do and are marvelously effective at integrating that knowl-
edge into a working whole, High-level languages are artifi-
cially constrained programming environments, able to pass
relatively little of what you know along to the ultimate
machine code. There are good reasons for that: High-level
languages have to be compilable and comprehensible by
humans. Nonetheless, there’s no way for a high-level lan-
guage to know where to focus its efforts, or which way to
bias code,

For example, how can a Pascal compiler know that one
loop repeats twice, on average, while another repeats 32,767
times? How can a C compiler know that one subroutine is
time critical, deserving of all possible optimization, while

Dr. Dobb’s Journal, March 1990
206

another subroutine executes in the background while wait-
ing for the next key to be pressed, so speed matters not at
all? The answer is: No way. (Actually, #pragma can do a
little of that, but it's no more than a tiny step in the right
direction.)

Just as significantly, no compiler can globally organize
your data structures and the code that manipulates those
structures to maximum advantage, nor take advantage of the
vast number of potential optimizations as flexibly as you
can. (Space forbids even a partial listing of optimization
techniques for the 80x86 family: The list is astonishingly
long and varied. See Tim Paterson’s article in this issue for
a small but potent sample.) When it comes to integrating all
the information about a particular aspect of a program and
implementing the code as efficiently as possible given the
capabilities of a particular processor, it's not even close:
Humans are much better optimizers than compilers are.

Almost any processor can benefit from hand-tuned as-
sembly language, but assembly language lives most vi-
brantly in the 80x86 family, The 80x86 instruction set is
irregular; the register set is small, with most registers dedi-
cated to specific purposes; segments complicate everything;
and the prefetching nature of the 80x86 renders actual
execution time non-quantifiable — and optimization at best
an art and at worst black magic — making the 80x806 family
a nightmare for optimizing-compiler writers. The quirky

17

AS M

(and highly assembly language amenable) instructions of
the 8086 live on in the latest 80x86-family processors, the
80386 and 80486, and will undoubtedly do the same for
many generations to come. Other processors may lend
themselves better to compilers, but the 80x86 family is and
always will be a wonderland for assembly language.
Consider this: Well-written assembly language provides
a 50 to 300 percent boost in performance over compiled
code (more sometimes, less others, but that's a conservative
range). An 8-MHz AT is about three times faster than a PC,
a 16-MHz 80386 machine is about twice as fast as an AT, and
a 25-MHz 80386 is about three times as fast as an AT. There
are a lot of PCs and ATs out there — 20 to 30 million, I'd

When you absolutely, positively need
fo keep program size to a minimum,
assembly language is the way 1o go

guess — and there is a horde of users contemplating the
expenditure of thousands of dollars to upgrade.

Now consider this. Those users don't have to upgrade —
they just need to buy better-written software. The per-
formance boost good assembly language provides is about
the same as stepping up to the next hardware platform, but
the assembly language route is one heck of a lot cheaper.

In other words, better software can eliminate the need for
expensive hardware, giving the developer the opportunity
to realize a healthy profit for his extra development efforts.
Just as important is the fact that good assembly language
runs perfectly well on slower computers, making the market
for such software considerably larger than the market for
average software. If you make your software snappy on an
8088, your potential market doubles instantly and the com-
petition thins.

Finally, it’s on the slower computers — the PC and AT —
that assembly language optimization has the most effect
(see the example later in this article), and that's precisely
where improved performance is most needed.

Enter the User

So assembly language produces the best code. What of ir?
If high-level languages make it easier and faster to create
programs, who cares if those programs are slower?

The user, that's who. Users care about perceived perfor-
mance — how well a program seems to run. Perceived
performance includes lack of bugs, ease of use, and, right
at the top of the list, responsiveness. Hand users a whiz-
bang program that makes them wait at frequent intervals,
and they'll leave it on the shelf after trying it once. Give users
a program that never gets in their way, and they may love it
without ever knowing quite why. In these days of all-too-
sluggish graphical interfaces, the performance issue is cen-
tral to the usability of almost every program.

What users don’t care about is how a program was made.
Do you care how your car was designed? You care that it's
safe, that it’s reliable, and that it performs adequately, but
you certainly don't care whether the manufacturer used
just-in-time manufacturing, or whether mainframe or micro-
computer CAD was used in the design process. Likewise,
users don't care whether a programmer used OOP or C or
Pascal, or COBOL, for that matter; they care that a program
does what they need and performs responsively. That's not

18

LIVES

purely a matter of speed, but without speed the user will
never be fully satisfied. And when it comes to speed, as-
sembly language is king.

Use Only as Directed

When you need it, there's no substitute for assembly lan-
gudage, but it can be a drag when you don't need it — so
know when to use it. Humans are better large-scale design-
ers and small-scale optimizers than compilers, but they're not
very good at the grunt work of compiling, such as setting up
stack frames, handling 32-bit values, allocating and ac-
cessing automatic variables, and the like. Moreover, humans
are much slower at generating code, so it's a good idea 1o
avoid being a “human compiler.” Some people create com-
plex macros and assembly language programming conventions
and do all their programming in assembly language. That
works — but what those macros and conventions do is
make assembly language function much like a high-level
language, so there's no great benefit, especially given that
you can drop into assembly language from a high-level
language at any time just by calling an assembly language
subroutine (or, better yet, by using in-line assembly lan-
guage in a compiler that offers that feature, such as Turbo
C). Unless you're a masochist, let your favorite compiler do
what it's best at — compiling — and save assembly lan-
guage for those small, well-defined portions of your software
where your efforts and unique skills pay off handsomely.

A relevant point is that assembly language alone is not the
path to performance. If you have a program that takes as
long as a second to update the screen, you have problems
that assembly language alone won't solve: Proper overall
design and algorithm selection are also essential. However,
most software designers consider the job done when the
design and algorithm phases are complete, leaving the
low-level optimization to the compiler. 1 repeat: No com-
piler can match a good assembly language programmer at
low-level optimization. Given the irregular nature of the
80x86 family and the huge PC software market, it’'s well
worth the time required to hand-optimize the few critical
portions that control perceived performance. Only in as-
sembly language can vou take full responsibility for the
performance of your code.

Don’t Spit into the Wind
While T can't offer a cut-and-dried dictum on when to use
assembly language, the practice of using it when the user
would notice if you didn't is a good rule of thumb. While
some programmers would take this rule too far and use
assembly language too often, the vast majority of program-
mers will lean over backwards the other way, in the face of
all evidence to the contrary. Hal Hardenberg's late, la-
mented DTACK Grounded reveled in the folly of the AT&T
programmers who implemented the floating-point routines
for a super-micro in C rather than assembly language —
with the result that the computer performed floating-point
arithmetic not quite so fast as a Commodore VIC-20!
Likewise, [once wrole an article in which [measured the
performance of an assembly-language line-drawing im-
plementation at four to five times that of an equivalent C
implementation. One reader rewrote the C code for greater
efficiency, ran it through Microsoft C rather than Turbo C,
and wrote to inform me that I had shortchanged C; assembly
language was actually “only” 70 percent faster than C. As it
happens, the assembly-language code wasn't fully opti-
mized, but that's not the important point: What really mat-
ters is that when programmers go out of their way to
produce code that's nearly twice as slow (and in an impor-
tant user-interface component, no less) in order to use a

Dr. Dobb’s Journal, March 1990
207

20
208

ASH LIVES

(continued from page 18)

high-level language rather than assembly language, it's the
user who's getting shortchanged. Commercial developers
in particular can't afford to ignore this, and I suspect that
most such developers are DDJ readers. If you're aiming to
sell hundreds of thousands of copies of a program, you're
guaranteed to have stiff competition. If you don’t go the
extra mile to provide snappy response, someone else will —
and you'll be left out in the cold.

Assembly language lives, though, for
one simple reason: Properly applied,
it produces the best code of any
language. By far

On the other hand, assembly language code is harder and
slower to write, and pays off only in the few most critical
portions of any program. There are limits to the levels of
complexity humans can handle in assembly language, and
limits to the development time that can be taken before a
product must come to market. Identify the parts of your
programs that significantly affect the performance perceived
by the user (a code profiler can help greatly here), and focus
your efforts on that code, with especially close attention to
oft-repeated loops.

80x86 Assembly Language in Action
Enough talk. Let's look at an example of assembly language
in action. Listing One, page 94, shows a C subroutine,
CopyUppercase, that copies the contents of one far zero-
terminated string to another far zero-terminated string, con-
verting all lowercase characters to uppercase in the process.
The subroutine consists of a single, extremely compact loop
that should be ideal for compiler optimization. In fact, |
organized the loop for the best results with Microsoft C 5.0,
the test compiler, and used the intermediate variable Upper-
SourceTemp in order to allow for more efficient compiled
code. There may be a more efficient way to code this
subroutine, but if you're going to go to the trouble of being
compiler-specific and knowing compiler code generation
that intimately, why not use assembly language, which
provides direct control and gives you the freedom to create
the best possible code? Microsoft C 5.0 generates the code
shown in Figure 1 from the version of CopylUppercase in
Listing One when maximum optimization is selected with
the /Ox switch. It's not bad code, but neither is it great. The
far pointers are stored in memory and must be loaded each
time through the loop, and a considerable amount of work
is expended on determining whether each character is up-
percase, although the case check is done with a table
look-up, which is generally one of the most desirable 80x806
programming techniques. A serious failing is that none of
the 80x86 family’s best instructions — the string instructions —
are used. The upshot is that Listing One runs in the times
listed in Figure 2 on various PC-compatible computers. (All
times discussed in this article were measured with the Zen
timer described in my book Zen of Assembly Language,
from Scott, Foresman & Company, modified slightly to work
with Microsoft C.)

Can we do better in assembly language? Indeed we can,
as Listing Two (page 94), which replaces the C version of

Dr. Dobb’s Journal, March 1990

(continued from page 20)

CopyUppercase in Listing One with an assembly language
version, illustrates. Listing Two simply keeps both _far point-
ers in registers and uses string instructions to access both
strings; the return for the 21 assembly-language instructions
that do that is a performance improvement ranging from
two to three-plus times, as shown in Figure 2. If this code
happens to be in a performance-sensitive portion of a pro-
gram, that's quite a return for a little assembly language.

Now, you may well think that the above example is
biased in favor of assembly language, what with the far
pointers, which assembly language tends to handle much
better than do compilers. I would disagree: Almost every
PC program now takes advantage of the full 640K of mem-
ory, and most of that memory must be accessed via far
pointers, so access to far data is a most important issue to
PC developers, and the ability of assembly language to
handle far data just about as fast as near data is a substantial
point in favor of assembly language. In fact, this example is
representative of a large class of problems developers face,
involving data copying, data transformation, data checking,
pointers, and segments. Nonetheless, let's see what hap-
pens if we alter CopyUppercase to use near pointers.

Listing Three (page 94) shows Listing One changed to use
near pointers. Listing Three, which generates the code
shown in Figure 3, is indeed much faster than Listing One;
it still takes at least half again as long as Listing Two, but it's
closing the gap. By contrast, Listing Two wouldn't much
benefit from near pointers, because it already keeps the
pointers in the registers. Does that mean that for near data
C almost matches assembly language?

Not a chance. We haven't optimized the assembly lan-
guage implementation yet; Listing Two is just a straight port
of Listing One from C to assembly language. Listing Four
(page 94) shows Listing Two converted to use near point-

_CopyUppercase proc near
push bp
mov bp.sp
sub sp,0002
Labell:
les bx,[bp+08]
mov cl,es:[bx]
inc word ptr [bp+08]
mowv ax,cx
chw
mov bx,ax
test byte ptr [bx+0115],02
e Label2
MoV ax,cx
sub al,20
jmp Label3
Label2:
MoV ax,cx
Label3:
les bx,[bp+04]
maov es:[bx],al
inc word ptr [bp+04]
or cl,cl
jne Label1
mov [bp-02],cl
mov sp.bp
pop bp
ret
_CopyUppercase proc near

ASH LIVES

String type/ Execution time in microseconds on
Language

(Listing) 8088 80286 80386
Far strings/C 2258 (1.0) 466 (1.0) 140 (1.0)
(Listing One)

Far strings/ASM 662 (3.4) 150 (3.1) 62 (2.3)
(Listing Two)

Near strings/C 1183 (1.9) 282 (1.7) 85 (1.5)
(Listing Three)

Near strings/ 574(3.9) 115 (4.1) 50 (2.8)
ASM

(Listing Four)

Near strings/ 410 (5.5) 85 (5.5) 46 (3.0)
optimized ASM

(Listing Five)

Figure 2: The execution times of the various C and assem-
bly language implementations of CopyUppercase shoun

in Listings One through Five. For a given [isting running
on a given processor, the number in parentheses represents
the performance of that listing relative to the performance
of Listing One on that processor; the bigher the value, the
better the performance. 8088 timings were performed on
an IBM XT- 80286 timings were performed on a 10-MHz
one-wait-state AT clone; and 80380 timings were performed
on a 20-MHz zero-wait-state 32K-cache Toshiba T5200

_CopyUppercase proc near
push bp
mov bp,sp
sub sp,0002
push di
push Si
mov di,[bp+04]
mowv si,[bp+08]
Labeld:
mov cl,[si]
inc si
mov ax,cx
cbw
mowv bx,ax
test byte ptr [bx+0115],02
je Label2
mov ax,cx
sub al,20
jmp Label3
nop
Label2:
mov ax,cx
Label3:
mov [di].al
inc di
or cl,cl
jne Labeld
mov [bp+04].di
mov [bp+06],si
mov [bp-02],cl
pop si
pop di
mov sp,bp
pop bp
ret
_CopyUppercase proc near

Figure 1: The code generated for CopyUppercase by Micro-
soft C 5.0 when Listing One is compiled with the /Ox switch
(maximum optimization)

22

Figure 3: The code generated for CopyUppercase by Micro-
soft C 5.0 when Listing Three is compiled with the /Ox switch
(maximum optimization)

Dr. Dobb’s Journal, March 1990
209

210

ASM LIVES
T T R SRR

(continued from page 22)

ers, plus a couple of twists. First, two bytes are loaded,
converted to uppercase, and stored at once, cutting the
number of memory-accessing instructions in half. Second,
the value used to convert characters to uppercase and the
upper- and lowercase bounds are stored in registers outside
the loop, so that they can be used more efficiently inside the
loop. These are simple optimizations, but ones that I doubt
you'll find a compiler using — and they’re highly effective.
As Figure 2 indicates, Listing Four is approximately 20
percent faster than Listing Two and about two times faster
than the nearC implementation of Listing Three.

If you have a program that takes as
long as a second to update the screen,
you have problems that assembly
language alone won't solve

We're not done optimizing yet, though. We've focused
so far on relatively simple, linear optimization. Let’s pull out
all the stops, throw some unorthodox techniques at the
problem, and see what comes of it.

On most PC compatibles, the key is this: The processor
is slow at fetching instruction bytes and branching (in fact,
all 80x86 processors are relatively slow at branching). If we
can keep one or the other of those aspects from dragging
the processor down, we can often improve performance
considerably. As it happens, we can attack both bottlenecks.
Look-up tables shrink code size, thereby easing the instruc-
tion fetching problem, and avoid branches as well. Well
then, why not simply look up the uppercase version of each
character? While we're at it, why not look it up with the
remarkably compact and efficient x/at instruction? In this
way we can convert the five instructions used to convert to
uppercase in Listing Four to a single xlat. We can also
improve performance by repeating multiple instances of the
contents of the loop in-line, one after the other; doing this
allows virtually all of the conditional jumps to fall through,
eliminating branching almost entirely. Both changes appear
in Listing Five, page 94. As Figure 2 indicates, those two
changes improve performance by 8 to 40 percent — and the
improvement is greatest on the slower 8088 and 80286
machines, which is surely where speed matters most. (Nor
is this code maxed out even yet; I simply had to draw the
line somewhere in the interests of keeping the code readily
comprehensible and this article to a reasonable length. For
example, we could use lodswto speed up Listing Five much
as we did in Listing Four. Never assume that your code is
fully optimized!)

Bear in mind, too, that the code in Listing Five can handle
far pointers as easily as near if the look-up table is moved
into the code or stack segment and accessed with a segment
override, a change that would scarcely affect performance
at all. When it comes to handling far strings, then, we've
improved performance by three to five and one-half times.
To put that in perspective, the performance improvement
gained by running the original C code on a 20-MHz zero-wail-
state 32K-cache 80386 computer rather than a run-of-the-
mill 10-MHz one-wait-state 80286 computer was only a little
over three times. I think it's obvious which is the cheaper
solution to improving performance.

(It's worth noting that carefully crafted assembly language

Dr. Dobb’s Journal March 1990

(continued from page 24)

was required to produce the massive performance improve-
ment measured earlier. Assembly language by itself guaran-
tees nothing, and bad assembly language, which is easy to
write, brings new meaning to the word bad.)

Don't think I've picked an example that stacks the deck
in favor of assembly language. In fact, assembly language
would do considerably better if we worked with arrays or
fixed-length Pascal-style strings, and would do better than
compiled code in cases where there were more variables (o
keep in the registers. We also weren't able to use repeated
string instructions in the earlier example; when such instruc-
tions can be used, as is often the case when an entire
program’s data structures are organized with efficient as-
sembly language code in mind, the performance advantage
of assembly language can approach an order of magnitude.
In short, we looked at a simple, limited example (and actually
one that lends itself relatively well to compiler optimi-
zation), and in optimizing it we’ve scarcely begun to tap the
treasure trove of assembly-language tools and techniques.

Yes, compiler library functions can use string instructions
and other assembly-language tricks as readily as vour own
assembly language code can, but there's a great deal that
library functions can't do. Don't assume that library func-
tions are well written, either — some are, but many aren't.
And remember that the author of the library knows no more
than the author of the compiler about when you most need
performance, and so must design code for adequate perfor-
mance under all circumstances. You, on the other hand, can
precision-craft your code for best performance exactly when
and where you need it. Also, keep in mind that library
functions can work only within the current model. When
you're working with data on the far heap in a program
compiled with the small model (an efficient arrangement for
programs that must handle a great deal of data), library
functions can't help you.

Finally, Microsoft C is a very good optimizing compiler,
considerably better than most of the compilers out there.
There are a few compilers that generate somewhat better
code than Microsoft C, but I'm willing to bet that most of the
C programmers reading this use either Microsoft or Turbo
C. (Turbo C did not match Microsoft C on this particular
example, so 1 used Microsoft C in order to give C every
advantage.) The C code was written to allow for maximum
optimization (the loop is only four lines long, for goodness’
sake) and uses a macro — not a function call — that ex-
pands to a table look up. In other words, the cream of the
C crop, given readily optimized code and using a look-up
table, went head-to-head with a few dozen hand-optimized
assembly-language lines — and proved to be about two to
five times slower.

Size Matters Too

I've focused on performance so far because the primary use
of assembly language lies in making software faster. Assem-
bly language can make for far more compact programs as
well, although that’s less often important because the PC
has a large amount of memory available relative to process-
ing power and because saving space is a diffuse effort,
requiring attention throughout the program, while enhanc-
ing performance is a localized phenomenon, and so offers
a better return on programming time.

There are cases where program size is crucial — memory-
resident programs, device drivers, utilities, for example —
and assembly language can work wonders. Of course, good
assembly language code is very tight, and hence very small,
but there's more to it than that. It's easy to drive programs
with compact data strings in assembly language (see “Roll

26

ASM LIVES

your Own Minilanguages with Mini-Interpreters” which 1
co-authored with Dan lllowsky, DDJ, September 1989). It's
also easy to map in code sections from disk as needed,;
assembly language can be far more flexible than any overlay
manager. Finally, assembly language eliminates the need
for non-essential start-up and library code. Co-workers tell
me of the time they needed to distribute a program to accept
a keypress from the user and return a corresponding error
level to a batch file. Written in C, the program was 8K in size;
unfortunately, the distribution disk didn't have that much
free space. Rewritten in assembly language, the same pro-
gram was a mere 50 bytes long,

When you absolutely, positively need to keep program
size to a minimum, assembly language is the way to go.

Can Live with It, Can't Live without It

Assembly language isn't the be-all and end-all of PC pro-
gramming, but it is the only game in town when either
performance or program size is paramount. Assembly lan-
guage should be used only when needed and, used wisely,
offers unparalleled code quality and an excellent return for
programming time invested.

For all the drawbacks of assembly language, eight-plus
years of PC software development have proven that devel-
opers can live with it; programs containing assembly lan-
guage have been written in an expeditious manner and
work very well, indeed. Those same years have shown that
developers can't afford to live without assembly language.
I suspect you'd be hard pressed to find any important PC
software that contains no assembly language at all, and [can
assure you that any application with a graphical user inter-
face either contains assembly language or is a dog. (Sure,
Windows applications and applications that link in third-
party libraries may not contain assembly language, but that's
because they've passed that responsibility off to other devel-
opers. And just who are those developers? DI readers,
that’'s who. Somebody has to create the good code that
top-notch software requires.)

For all the wishing, 80x86 assembly language isn't going
away soon; in fact, it's not going to go away at all. The 80x86
architecture lends itself beautifully to assembly language,
and performance will always be at a premium, no matter
how fast processors get. Back, when I used a PC, I thought
if I had a computer that was ten times faster, all my software
would run so fast that I'd never have to wait. Well, now I
use just such a computer, and much of the software I use is
faster as well (MASM, for example, is about ten times faster
than it used to be, and TASM is even faster) — and still |
spend a lot of time waiting. Software is never fast enough,
and better software is one heck of a lot cheaper than better
hardware.

Availability
All source code is available on a single disk and online. To
order the disk, send $14.95 (Calif. residents add sales tax)
to Dr. Dobb's Journal, 501 Galveston Dr., Redwood City,
CA 940063, or call 800-356-2002 (from inside Calif.) or 800-533-
4372 (from outside Calif.). Please specify the issue number
and format (MS-DOS, Macintosh, Kaypro). Source code is
also available online through the D] Forum on Compu-
Serve (type GO DDJ). The DDJ Listing Service (603-882-
1599) supports 300/1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the system answers, type:
listings (lowercase) at the log-in prompt.
DDJ
(Listings begin on page 94.)
Vote for your favorite feature/article.
Circle Reader Service No. 1.

Dr. Dobb's Journal, March 1990
211

Assembly Language

Tricks of the Trade

Hand-picked code for smaller, faster programs

Tim Paterson

t is the nature of assembly language programmers (O

always look for ways to make their programs faster and

smaller. Over the vyears, the individual programmer

develops a personal catalog of tricks and techniques

that squeeze out a few bytes here or a few clocks there.
My own catalog of 8086 tricks has been 13 years in the
making, including a few from the 8080 that survived the
translation.

One of the original motivations for finding some of these
alternatives to the obvious approach is the severe “branch
penalty” of the 8086 and 8088, When a conditional jump is
taken on the 8086/8088, four times as many clock cycles are
required (16) as when the jump is not taken. However, this
penalty has been reduced on the 286 and 386. When taking
a conditional jump, the newer processors require only seven
clocks, plus one clock for each byte in the instruction at the
target of the jump. That is, if you're jumping to an instruction
that is 2 bytes long, the conditional jump takes nine clocks.
This improvement means that several of the nine tricks
presented here are of little or no value on the 286 and 386.
However, I have presented them anyway so you'll know
what they do if you see them. They are also still useful for
code targeted to the 8086/8088.

For each of these tricks, | have compared its size and
speed to the “direct” approach. Because the 286 is now the
largest selling processor in PCs, 1 have used 286 clock
counts to compare timing. When conditional jumps branch
out of the presented code sequence, [assume the target
instruction is 2-bytes long so that the branch would take
nine clocks.

Tim is the original author of MS-DOS, Versions 1.x, which

he wrote in 1980— 82 while employved by Seattle Computer
Products and Microsoft. He was also the founder of Falcon
Technology, which was eventually sold, to Phoenix Tech-
nologies, the ROM BIOS maker. He can be reached through
the DDJ office.

30
212

#1 Binary-to-ASCll Conversion

Converts a binary number in AL range Oto OFH, to the
appropriate ASCII character.

:Handle 5
:Did 1t work?

add 8 L

cmp al "gH

Jbe HaveAscii

add al,"a" - ("g" + 1)
HaveAscii:

;Apply correction for JAH -0FH

Direct approach: 8 bytes, 12 clocks for OAH-OFH, 15
clocks for 0- 9.

add al,30H ; 30H - 9FH

daa 90H - 3%H, 00H -05H +CY

ade al,40H ; ODOK - OD9H +CY, 41H - 46H

daa 30H= 390, 41K <4580 = "pH=T", an-Nph

Trick: 6 bytes, 12 clocks,

#2 Absolute Value

Find absolute value of signed integer in AX.

or A, ax ;5et flags
Ins AxPosgitive ;Already the right answer if pogsitive
neg ax ; It was negative, so [11p sign

AxFPositive:

Direct approach: 6 bytes, 7 clocks if negative, 11 clocks
if positive.
cwd ;jE¥xtend sign through dx

MOT ax,dx ;Complement ax if negative
sub ax, dx ;Increment ax if it was negative

Trick: 5 bytes, 6 clocks.

(continued on page 32)

Dr. Dobb’s Journal, March 1990

(continued from page 38)

#3 Smaller of Two Values ("MIN"')

TRICKS

#6 Binary/Decimal Conversion

Given signed integers in AX and BX, return smaller in AX.

Cmp ax,bx

31 AxSmaller

xchg ax,bx soWap smaller inte ax
AxSmaller:

Direct approach: 5 bytes, 8 clocks if ax >= bx, 11 clocks
otherwise.,

sub ax, bx ;Couldoverflow if signs aredifferent!!
Wl idu=01f ax>=bx, de=0FFFFHif ax < bx
and ax,dx jax=0ifax >=-hbx, ax=ax - hx if ax < bx
add ax,bx jax=bx 1f ax >=bx, ax=ax if ax < bx

Trick: 7 bytes, 8 clocks. Doesn’'t work if lax - bx| >
32K. Not recommencded.,

#4 Convertto Uppercase

Convert ASCII character in AL to uppercase if it's lower-
case, otherwise leave unchanged.

cmp al,"a"

jb Caselk

cmp al, ="

1a Caselk

sub al,"a" — "A" ;Inrange “a"-"z", apply correction
Cagselk:

Direct approach: 10 bytes, 12 clocks if less than “a"
(number, capital letter, control character, most symbols),
15 clocks if lowercase, 18 clocks if greater than “2” (a few
symbols and graphics characters).

sub al,™a" ;Lowercasenow 0 - 25

cmp gl TE™ = Sa@T L peRt CY Tlag 1D lowercase

sbh ah,ah ;ah = [0FFH if lowercase, else ()
and ah,"a" - "a" ;ah = correctianor zero

sub al,ah shpply correction, lower to upper
add al:"a" ;Restore base

Trick: 13 bytes, 16 clocks. Although occasionally faster,
it is bigger and slower on the average. Not recommended.
Used by Microsoft C 5.1 stricmp() routine.

The 8086 instruction AAM (ASCII adjust for multiplica-
tion) is actually a binary-to-decimal conversion instruc-
tion. Given a binary number in AL less than 100, AAM
will convert it directly to unpacked BCD digits in AL and
AH (ones in AL tens in AM). If the value in AL isn't
necessarily less than 100, then AAM can be applied twice
to return three BCD digits. For example:

aam ral = ones, ah =tens & hundreds
Ty cl;al :Saveones incl

ilsis al,ah :Set up todoit again

aam ;ah = hundreds, al =tens, cl =ones

AAM is really a divide-by-ten instruction, returning the
quotient in AH and the remainder in AL It takes 16
clocks, which are actually two clocks more than a byte
DIV. However, you easily save those two clocks and
more with reduced setup. There's no need to extend the
dividend to 16 bits, nor to move the value 10 into a
register.

The inverse of the AAM instruction is AAD (ASCII
adjust for division). It multiplies AH by 10 and adds it to
AL, then zeros AH. Given two unpacked BCD digits (tens
in AH and ones in AL), AAD will convert them directly
into a binary number. Of course, given only two digils,
the resulting binary number will be less than 100. But
AAD can be used twice to convert three unpacked BCD
digits, provided the result is less than 256. For example:

rah =hundreds, al =tens, cl =ones
aad sCombine hundreds and tens
ML ah;-ﬂi
mov al,cl iMave ones toal
aad ;Binary result in ax, mod 256

AAD takes 14 clocks, which is one clock more than a
byte MUL. Again, that time can be saved because of
reduced setup.

#7 Multiple Bit Testing

#5 Fast String Move

Assume setup for a standard string move, with [J5:57
pointing to source, ES:DI pointing to destination, and
byte count in CX. Double the speed by moving words,
accounting for a possible odd byte,

shr i, A o sConvert toword count
rep MoV SW i Move words

ing AllMoved ;CY clearif nooddbyte

v sk ;Copy that last odd byte

AllMoved:

Direct: 7 bytes, 10 clocks if odd, 11 clocks if even (plus
time for repeated move),

shr i P ;i Canvert to word count
rep MoV SW jMove words

ade CX,CX ;Move carry back into cx
rap maowsh Move cne more 1 £ odd count

Trick: 8 bytes, 9 clocks if even, 13 clocks if odd (plus
time for repeated move). Not recommended.

Test for all four combinations of 2 bits of a flag byte in
MEeMmOory.

MoV al, [Flag]
test al,Bitl
Iz Bitlset
test al,Bit?
jz BothZero
Bit20nly:
BitlSet;
test al,BitZ
nz BothOne
BitlOnly:

Direct approach: 15 bytes, up to 29 clocks (to BothOne),

The parity flag is often thought of as a holdover from
carlier days, useful only for error detection in communica-
tions. However, it does have a useful application to cases
such as this bit testing. Recall that the parity flag is EVEN
if there are an even number of “one” bits in the byte
being tested, and ODD otherwise. When testing only 2
bits, the parity flag will tell you if they are equal — it is
EVEN for no “one” bits or for 2 “one” bits, ODD for 1
“one” bit.

The sign flag is also handy for bit testing, because it
directly gives you the value of bit 7 in the byte. The
obvious drawback is you only get to use it on 1 bit.

32

(continued on page 34)

Dr. Dobb’s Journal March 1990
213

34
214

TRICKS

(continued fmm page 32)
test [Flag] ,Bitl + Bit2
1Z Bothiero
jpe BothOne ;Bits areequal, but not both zero
;One (and only one) bit i1s sekt
.erre Bitl EQ 80H :vVerify Bitl isthe signbit
p 1 BitlOnly
BitZ0nly:

Trick: 11 bytes, up to 21 clocks (to Bit10niy).

Note that the parity flag is only set on the low 8 bits of
a 16-bit (or 32-bit 380) operation. Suppose you test 2 bits
in a 16-bit word, where 1 bit is in the low byte while the
other is in the high byte. The parity flag will be set on the
value of the 1 bit in the low byte — EVEN if zero, ODD
if one. This is potentially useful in certain cases of bit
testing, as long as you are aware of it!

Another example of using dedicated bit positions is to
assign flags to bits 6 and 7 of a byte. Then test it by
shifting it left 1 bit. The carry and sign flags will directly
hold the values in those 2 bits. In addition, the overflow
flag will be set if the bits are different (because the sign
has changed).

Finally, there is a way to test up to 4 bits at once.
Loading the flag byte into AH and executing the SAHF
instruction will copy bits 0, 2, 6, and 7 directly into the
carry, parity, zero, and sign flags, respectively.

#8 Function Dispatcher

Given a function number in a register with value O to
n — 1, dispatch to the respective one of n functions.

iFunction number in cx

joxz Functiond
dec ox
12 Functionl
dec CX
1z Function?

Direct approach 1: 3% - 4 bytes, 5" clocks maximum.
Not bad for small »n (< 10).

;Function number in bx

shl b, 1
jmp tDispatch|[bx]

Direct approach 2: 2*n + 6 bytes, 15 clocks. The best
approach for large n when speed is a consideration.

;Function number in ox

JEHE Functiond
laap Mot Funcl
Functionl:
MotFuncl:
loop NotFunc#
Function?:
NotFunci:
loop NetFunc3

Functioni:

Trick: 2*n - 2 bytes, 10'n - 16 clocks maximum. Slow,
but compact.

#9 Skipping Instructions

Sometimes a routine will have two or more entry points,
but the only difference between the entry points is the first
instruction. For example, the instruction that differs from
one entry point to the next could be initializing a register
to different values to be used as a flag later on in the routine.

(continued on page 36)

Dr. Dobb’s Journal, March 1990

TRICKS

o R e e P T
(continued from page 34)

Entryl:

M al,d

Jmp Bady
Entryé:

mow al,l

jmp Sody
Entryd:

y mov al,=1

Body:

Direct approach: 10 bytes, 11 clocks (from Entryl).
Instead of using jump instructions to skip over the
alternative entry points, a somewhat sleazy trick allows
you to simply skip over those instructions. The technique
goes back at least to 1975 with the first Microsoft Basic
for the 8080. It became known as a “LXI trick” (pro-
nounced “liksee™), after the 8080 mnemonic for a 16-bit
move-immediate into register. Essentially, it allows you
to skip a 2-byte instruction by hiding it as immediate data.
A variation, the “MVI trick” (pronounced “movie™), uses
an 8-bit immediate instruction to hide a 1-byte instruction.
Applied to the 8086, there is another variation. The
skip can use a move-immediate instruction and destroy
the contents of one register, or it can use a compare-
immediate instruction and destroy the flags. Using the
latter case the example above could be code such as this:

SEIPZF MACEO

db 3DH ;0pcode byte for CMP AX, <immed>

ENDM
Entryl:

mowv al,o

SKIPZF :Mext 2 bytes are immediate data
Entry2;

M al, 1

SKIPZF sHext 2 bytes are immediate data
Entry3;

mov al, -1
Body :

The effect of this when entered at Entry1 is:

Entryls;
MoV al,0
cmp ax, U1B0H :Data 1s MOV AL, 1
cmp ax, 0FFBOH +Data is MOV AL, -1
Bedy:

Trick: 8 bytes, 8 clocks (from Entry1).

This trick should always be hidden in a macro, Here
is a more complete macro that requires an argument
specifying what register or flags to destroy. The argument
is any 16-bit general register or “F" for flags.

SKLIF2 MACRO ModReq
IFIDNI <ModReg> ,<f> sModify flags?
di aDH sOpcode byte for CMP A, <immed>
ELSE
o = i)
IEP Req,<ax,cx,d=x,bx,sp,bp,81,di>
IFIDN <ModReg> , <Reqg> :Find the register in list yet?
db OBEH + 2 1
EXITM
ELSE
ol = 2 i+l
ENDIF : IF ModReq = Reg
ENDM ; IRP
.BIrnz ¢ iEQS :Flag anerror if no match
ENDIF +IF ModReg=F
ENDM ;SKIPZ
;Examples
SKIP2 L sModify flags only
SKIPZ ax ;Destroy ax, flags preserved

DD]J
Viote for your favorite featurefarticle,
Circle Reader Service No. 2.

Dr. Dobb's Journal March 1990
215

6304(

Programming

More than just an 030 with floating point

he newest entry in the CPU chip

wars is now ready for the sys-

tem builders: The Motorola

08040. The first available chips

will work at 25 MHz, with 33
MHz and faster parts becoming avail-
able later this year. Don't think, though,
this is just a faster 68030: Motorola built
in some nifty features to make
multiprocessing hardware much easier
to design and build,

68000 Family Overview
Motorola has gone to great pains to
make a line of compatible 32-bit micro-
computer chips. Like IBM did with the
System/3060 mainframe computers of the
mid-1960s, Motorola made sure that
applications code written for the earlier
members of the 68000 family would run
without maodification on later chips. This
scheme makes the assumption that pro-
grammers segregate 1/O and chip con-
trol code from the rest of the system.
The general programming model for
the 68000 family is the same: Eight
32-bit data registers, seven 32-bit ad-
dress registers, one 32-bit user stack
pointer, one 32-bit supervisor stack
pointer, and chip-specitic registers. The
08000 family supports operations on in-
dividual bits, 8-bit bytes, 16-bit words,
32-bit longwords, and packed binary
coded decimal (BCD) data. Address calcula-
tions are all 32 bits, although some CPUs

Steve is free-lance writer and co-foun-
der of Project Notify, a non-profit, emer-
gency communrications network. He
can be reached at PO, Box 8656, In-
cline Village, NV 89450 or on Comput-
Serve at 70007,3351.

38
216

Stephen Satchell

have limited addressing capability.

The 68008 (1980) is much the same
as the Intel 8088 in that it talks to the
outside world over a 20-bit address bus
and an 8-bit data bus.

The 68000 (1979), the first CPU in
the family, and the low-power CMOS
G8HCO000 use a 24-bit address bus and
16-bit data bus.

The 68010 (1982) takes the 68000
and adds virtual memory support, us-
ing an external memory management
unit (MMLI) and a special three-instruc-
tion “loop mode” that lets the 68010
execute a tight three-instruction loop
repeatedly without fetching the instruc-
tions from memory more than once.

The 68020 (1984) is the first true
32-bit member of the 68000 family. The

address and data busses are both a full
32-bits wide, allowing the chip to di-
rectly access four gigabytes (4096
Mbytes) of memory, up to 32 bits at a
time, Memory management is provided
by an external MMU. Instead of the
68010's “loop mode,” the 68020 imple-

ments a 250-byte (04 x 4 direct
mapped) instruction cache so that most
loops run out of on-chip cache
memory — improving execution time
33 percent and reducing the load on
the system bus. Bit-tield instructions let
you deal with data of varying bit lengths.
[nstructions for multiprocessing were
added into the 68020 as well,

The 68030 (1987) moves demand-
page memory management on-chip,
and adds a 256-byte (64 X 4 direct

Dr. Dobb's Journal, March 1990

68040

(continued from page 38)

mapped) data cache on-chip to com-
plement the 68020's 256-byte instruc-
tion cache. The data cache uses a write-
through philosophy. The bus system
implements a burst transter mode, that
lets the chip effectively use page-mode,
nibble-mode, and static-column DEAM
to load data and instructions into cache
memory quickly.

Enter the 68040

The newest member of the 68000 fam-
ily, the 68040, essentially combines a
beefed-up 68030 and the low-level func-
tions of the 68881 floating-point copro-

cessor onto the same chip. The im-
provements, however, go much beyond
that. Motorola’s goal appears to be to
make the 68040 as suitable as possible
for large-scale multiprocessing systems.

Instead of one MMU trying to serve
the entire chip, the 68040 gives you
two: One for instructions, one for data.
This keeps data and instruction accesses
from causing page table entry faults
(not to be confused with page faults)
s0 as to minimize the amount of time
the 68040 has to go to RAM to fetch
address translation information.

The two on-chip memory caches are
completely changed. Not only do you

40

have a 4-Kbyte data cache and a 4-
Kbyte instruction cache, but the cache
systemm — particularly the data cache —
is designed to minimize the number of
times you have to go to the system
bus. The two caches are organized as
64 four-way associative maps (256 lo-
cations), with 16 bytes of data in each
cache location. The data cache can be
write through, as it is in the 68030, or
the 68040 can use a copyback philoso-
phy that delays the write to memory
until the chip needs the cache location
for something else or the CPU's super-
visor empties the cache.

When using cache in a multiprocessing
system, you can have data that is one
value in cache and another value in
main memory. This problem is called
“cache coherency.” The 68040 takes
care of this problem with “bus
snooping’ — the chip looks at the sys-
tem bus, and when a wrife memory
cycle is detected, any on-chip cache
location containing data for the changed
location is marked invalid.

What happens, though, when one
68040 has changed data, but hasn't writ-
ten it back to DRAM yet? The bus snoop
hardware has another trick up its sleeve.
When a read memory cycle is detected,
the 68040 checks its data cache to see
if it changed the requested location; if
s0, it inhibits the RAM memory cycle
and sends the correct data to the other
CPU. This reduces the amount of work
programmers have to do to keep data
up-to-date.

If you do a lot of scientific work,
watch out for the floating-point unit.
On the 68040, the only floating-point
operations supported are absolute value,
add, branch on condition, compare,
decrement and branch conditionally,
divide, move, move multiple, multiply,
negate, nop, restore internal state, save
internal state, set on condition, square
root, subtract, trap on condition, and
test. Other operations supported by the
68881, such as the trig and logarithmic
functions, have to be handled by soft-
ware emulation.

Assembler Programming Considerations
Portability When writing code that
needs to run on different sysiems, you
need to limit yourself to those instruc-
tions common to all the 68000 family.
(See Table 1 for those instructions to
avoid.) In particular, pay attention to
addressing modes. The 68020, '30, and
'40) support some additional modes not
found on the '00, 08, and '10. Also try
to segregate chip-dependent functions
from the rest of your program. This
limits how much code has to be re-
placed as you shift from CPU to CPU.
The majority of your code should be

Dr. Dobb's Journal, March 1990
217

68040

(continued from page 40)
running in user mode anyway.

Loops The loop mode of the 10
is of limited use, being composed of a

tion. Use this construct when you can
on the off chance you end up running
on a '10, such as one of the older Sun
workstations. Where possible, try to
keep loops under 256 bytes, the size

loop-able instruction and a DBcc instruc-

b S ‘&4."iﬁhr'. St
Move from Condition Gode ragislﬁr’ s
~ Move from %mﬂiagtﬁtq; SR 2t
~ Move Controf register -';,:- e
Move Status ragister SRS T D
A Fletumand Eaalitﬂﬂta SR

‘Move from CCR
 Move fmrﬁ, EFI
Mﬁh*EG
MEWEE

Branch mﬁdmaﬁa&y fauwmt jisplacements)
TﬁstEh‘-EFfﬁtd and Dhang& ' fo e

e ’Ehi FlerlﬂEtlFant Sﬁgmﬂ : ';: (OB

Eit Field FIrEFFfrsf euiﬂr e S e

Bit Field Insert [B e R
- TestBit Field and Set B : A D e s
TestBitField alni el e g O O

' ~ . st

b a Lt . .
- s , : s [
Bre nt. LRre L b =ik
. - . , s > L %

v : L] e = - , a e
5 . L e R e A e Ve L gt Lo et O L
I Tt e Il E : oL o -

-

AL G.ﬁﬂ] .'M i 3 ; j::_baltMDdLllE L | T *“:v : 3
- CAS Compare and ¢ S |
- CAB2 - Compare and $wap nuﬁt parnds o can s
GHHE : -Check register against upper ah:i Iﬂwﬂl‘ nuund s

o ~ Compare Mﬁistm@gainsipppﬁfand Jn;-wer haunr.;l {bamrean}
Bcc Brarich on CoProcessor conditio
"apBE'cq . TestCoProcessor condition Dabfamant an:i Eranr:h Sl e
. fCoProcessor General fmﬁ:‘,ﬁnn R S e e e S
_'{:uanesﬁar Hestura hmctun ! R Tl il

.-.:EatdﬂGan&basa-ﬁr’mﬁdffmn' R

~ Trap on CoProcessor mndumn T RN s A D
L e e
“Long unsigned divide AR SRR :

~ Extendbytetolong S e e e R
--:kahuﬁﬂlfmdadﬂamrﬁ"al (EEE}I RRGAE e A e
; ?&mm from Muduia{ nmt* Hasacl the manual'j
rap

Pt

hl. | T

conditionally

: Invaﬁdatea Epﬂﬂﬂﬂ antry in ﬂ'-e adc!rasatransiahun uac:he {ATD}
Invalidates all eniries in the address translation cache (ATC)
Load an entry into the address transiation cache :
- Load an entry into the address transiation nﬂcha A
~ Get information aial:-fut a lﬁgmaraudmss e AR

e oy o o o B T - e L, e

Invalidate cache entries

~ Push, then invalidate, f:&f:he-éﬁtﬁ es

MOVE16

(PFLUSHA)

(PLOAD)
- (PMOVE)

. Mnug' ‘I:E-'_E:uﬁe hiu-r;lk: block must be aligned

Table 1: 680x0 family instruction set differences. An instruction or capability
added or changed is in the open. An instruction or capability removed is in
parens. For example, the CALLM instruction was removed in the 68030, so in
the table it shows as (CALLM).

42
218

Dr. Dobb's Journal, March 1990

68040

(continued from page 42)
of the instruction cache on the '20. If a
much-repeating loop can't be squeezed
down that far, move seldom-executed
code such as exception code outside
of the loop. The longer you can stay in
the cache, the faster that loop executes.
Loop Data In assembler, it is usu-
ally easier to whip through an array
word by adjacent word, so most as-
sembler language programmers won't
have to concentrate on what order data
gets accessed. If you are writing a table-
driven package, though, pay attention
to how table information makes you
access data. Where possible, the table
should be optimized so your program
sweeps through any array. This is some-

what important on the 30, and much
more important on the 40 — particu-
larly in multiprocessing systems.

Tests Many times, you have to load
one of two values into a register or
location based on some test condition.
The “IF. .. THEN., ..EBloE. ... -
struction is easy to understand, but the
multiple branches can play hob with
instruction fetching. Instead, try . . . IF
... THEN . .."” where you set the less
common value, perform the test, and
conditionally branch around the more
common value. The penalty on '00,
'08, and "10 CPUs is almost zero, but
the savings on the 20, '30, and 40 can
be significant. In fact, the first way re-
quires at least five instructions (test,

branch-false, set-1, branch, set-2) while
the other way saves one instruction
(set-2, test, branch-false, set-1).

High-Level Language Considerations
Portability Chip-dependentfunctions
usually have to be written in assem-
bler, so make sure the design of the
systemmn routines are as generic as possi-
ble so you don’t have to change appli-
cations code when the next gee-whiz
feature is introduced in the 68050. You'll
need to package separate interface mod-
ules for each chip. High-level code
should always be run in user mode.

Loops If your compiler can opti-
mize for the loop mode on the 10 or if
the library includes routines to perform
functions using loop mode, use them.
When structuring loops that are exe-
cuted often consider dropping struc-
tured programming practices to pack
the loop as tight as possible. The goal
is to get the loop within the 256-byte
window of the instruction cache of the
'20. Branches are much cheaper than
function calls to get the seldom-used
code out of the loop. You have more
latitude with the larger cache on the 30
and '40.

Loop Data Be very careful when
transversing arrays that you know ex-
actly how your compiler is working.
Fortran programmers need to remem-
ber that they have to vary the first sub-
script first in order to walk through
data sequentially. For PL/I and Pascal
programmers, most compilers require
you to vary the last subscript first to
sweep an array. C programmers need
to remember that when accessing a
multidimensional array using the array
operators that are in the construct “alilljl”,
the fragment “alil” loads a pointer, then
“<e>[j]" loads the desired word; use
an intermediate pointer where possi-
ble to limit the amount of pointer load-
ing when the first subscript is held
locally constant.

Tests You are at the mercy of the
compiler when it comes to ordering
tests to save time. Because compilers
vary so much in what they do, it prob-
ably isn't worth it to change the way
you select values.

Conclusion

The 68040 is more than “just a 68030
with floating point"” and more than Mo-
torola’s weapon to fight the Intel 80486,
It is a well-designed product in its own
right. Graphics programmers like the
support for manipulating bits, particu-
larly the bit-field instructions introduced
by the '20 and continued in the '40.

DD]J

Vote for vour favorite feature/article.
Circle Reader Service No. 3.

Dr. Dobb’s Journal March 1990
219

Homegrown
Debugging-386 Style!

Use hardware breakpoints to sniff through your C and

assembly code

lthough the installed base of

80386-based machines is ever

incredasing, most use this

souped-up machine as a faster

8086. One of the problems in
running the 80386 under DOS is that
you lose many of the advantages of the
386. In addition, many of the 80386's
powerful features are only usable in
protected mode. Of course, developers
loath to use special 803806 features be-
cause this can shut them out of the
large 8086/80286 market.

still, some features are usable while
the 803806 is operating as an 8080 (the
so-called “real mode"”). For instance, the
80386 has powerful on-board hardware
that allows sophisticated debugging tech-
niques that require hardware debugging
boards on other processors. This on-
board hardware is available in real mode
(as well as the other modes). With a little
ingenuity, you can put this hardware to
work while debugging programs.

This article puts a little of that kind
of ingenuity in your hands by showing
how you can use the 80386 hardware
to debug your programs. I'll provide a
program that can be included in your
assembly code to establish breakpoints
for the purpose of debugging either C
or assembly language programs. In ad-
dition, I'll provide an example program
and a quick utility that I'll explain shortly.

Al Williams is a staff systems engineer
for Quad-S Consultants Inc. His cur-
rent work includes a hypertext system,
several expert systems, and a 356 DOS
extender package. He can be reached
at 2525 South Shore Boulevard, Suite
309, League City, TX 77573.

46
220

Al Williams

All examples presented in this article
compile under either MASM 5.0 or Mi-
crosoft C 5.1.

BREAK386

BREAK38G (Listing One, BREAK380
ASM, page 96) is not a traditional de-
bugger in the sense of, say, DEBUG or
CodeView. By adding BREAK386 to
your assembly language code, you can
study it with code, data, and single-
step breakpoints. You can also exam-
ine DOS or BIOS interrupts that your
program calls, In addition, BREAK386
can add the same 3806 hardware debug-
ging to your Microsoft C programs.

BREAK386 provides functions to set
up 386 debugging (setup386()), set
breakpoints (break386()), and reset
803806 debugging (clear386(J). In ad-
dition, BREAK386 provides an optional
interrupt handler (int1_386(J) that sup-
ports register, stack, and code dumps
along with single stepping. You can
use any of these functions from either
C or assembly language.

There are cases where you may wish
to modify #nti_386() or write your
own interrupt handler. For example,
you may want to send the register
dumps to a printer and automatically
restart vour program. With C, you will
often want the interrupt handler to print
out variables instead of registers. T'll
provide some example interrupt han-
dlers in C in a later section.

Using BREAK386

You must assemble BREAK386 before
you can use it. Be sure to change the
. MODEILstatement to retlect the model
you are using. If you are using explicit

segment definitions in assembly, you
must decide how to integrate BREAK-
380's code and data segments with your
own. Assemble BREAK386 with the /Ml
option to prevent MASM from convert-
ing all labels to uppercase. The result-
ing .OB] file can be linked with your
programs just as with any other object
module.

If you are using programs (such as
memory managers or multitaskers) that
also use 386-specific functions, you may
have to remove these programs before
BREAK380 will function. The other pro-
gram will usually report a “privilege
exception’” or something similar. Sim-
ply remove the other 386 programs
and try again.

Adding 386 breakpoints to your pro-
gram requires three steps:

o Call setup386() to set the debug in-
terrupt handler address

e Set up breakpoints with the break-
386() call

e Call clear386()hefare your program
returns to DOS

Note that when calling these rou-
tines from assembly, the routine names
contain leading underscores. For con-
venience, Listing Two (BREAK386.INC,
page 102) contains the assembly lan-
guage definitions to use BREAK380.
Listing Three (BREAK380.H, page 102)
contains the same definitions for C.
BREAK386.INC also includes two mac-
ros, traceon and traceoff, which are
used to turn single stepping on and off
from within the program.

Figure 1 shows the output from a
breakpoint dump when using inti_

Dr. Dobb’s Journal, March 1990

386 DEBUGGING

(continued from page 46)

386(). The hexadecimal number on
the first line is the contents of the low
half of the DR6 register at the time of
the breakpoint. The display shows all
16-bit and segment registers (except
F§ and GS). Following that is a dump
of 32 words of memory starting at the
bottom of the stack (1CB1:09FA in the
example). The first three words of the
stack are from the debug interrupt. The
first word is the IP register, followed
by the CS register and the flags. A sim-
ple change in the interrupt handler can
remove this extra data from the display
(see "Detailed Program Operation” in
the next section).

Below the stack dump is a dump of

program code. This dump usually con-
sists of 16 bytes; 8 bytes before the

current instruction and 8 bytes at the
instruction pointer. This is convenient
for data breakpoints because they oc-
cur after the offending instruction. The
dump shows the starting memory ad-
dress (1B66:0049) followed by the bytes
at that address. An asterisk marks the
current CS:IP location, followed by the
remaining 8 bytes. If IP is less than 8,
the code dump will start at CS:0 result-
ing in fewer than 8 bytes before the
asterisk.

The last line of the dump prompts
you for further action. You can:

1. View your program's output screen.
When you select this option, BREAK386
replaces the current screen with your
program’'s original output, To restore
the debugging screen, press any key.

Program breakpoint:OFF1
S1=0000 DI=0A00 SP=09FA BP=0882

Stack dump:{ 1CB1 : 09FA)

AX=0000 FL=7216 BX=0080 CX=0007 DX=06AA
CS=1B66 IP=0051 DS=1BAD ES=1B56 S5=1CB1

0051 1B66 7216 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 D000 0000
0000 0000 0000 Q000 0000 0000 0000 0000 G000 0000 0000 0000 0000 0000 0000 0000

CODE=1B66 : 0049 =6A 04 E8 3F 00 83 C4 08 * B9 14 00 8A D1 80 C2 41

<V=iew output, <T>race toggle, <C=ontinue or <A=bort? _

Figure 1: Sample outpul from a breakpoint dump

2. Toggle the trace flag. This will switch
the state of the trace or single-step flag,
and continue the program in the same
manner 4s the "C"” command (see num-
ber 3). To determine whether or not
tracing is on, examine the value of
DRO6. If bit 14 is set (4000 hex), tracing
is on.

3. Continue execution of the program.
Selecting this option will resume the
program where it left off. The program
will execute until the next breakpoint
(if the trace flag is clear) or to the next
instruction (if the trace flag is set).

4. Abort the program. This will cause
the program to exit. Be careful, how-
ever, when using this selection. If you
have interrupt vectors intercepted, ex-
panded memory allocated, or anything
else that needs fixing before you quit,
the “A” command will not take care of
these things unless you rewrite the in-
terrupt handler or clear386(). (Also, if
vour program spawns child processes,
and the breakpoint occurred in the child,
the abort command will terminate the
child and the parent program will con-
tinue without breakpoints.)

Listings Four and Five, page 102, show
examples of using BREAK386 in assembly
and C. The identifiers beginning with
BP_ are defined in BREAK386.H and

221

(continued from page 48)
BREAK 386.INC,

A few notes on these functions are
in order, Your program must call
setupr386() before any other BREAK386
calls. You should pass it a segment and
an offset pointing to the interrupt han-
dler. After calling setup386(J, you may
use break386(Jto set and clear break-
points, Figure 2 shows the parameters

386 DEBUGGING

break3806() requires.

You must keep in mind a few facts
about the 80386 when setting break-
points or tracing. First, 2- and 4-byte
data breakpoints must be aligned ac-
cording to their size. For example, it is
incorrect to set a 2-byte breakpoint at
location 1000:0015 because that loca-
tion is on an odd byte. Similarly, a
4-byte breakpoint can monitor address

1000:0010 or 1000:0014 but not address
1000:0013. If you must watch an un-
aligned data item, you will have to set
multiple breakpoints. For example, to
monitor 2 bytes at 1000:0015, set a 1-
byte breakpoint at 1000:0015 and an-
other at 1000:0016.

Also, keep in mind that a data break-
point will occur even if you only access
a portion of its range. For instance, if

Most PC developers are familiar with
some aspect of chip debug assistance.
Even the 8088 has a breakpoint inter-
rupt and a “single-step flag,” which
allows debuggers to trace code one
instruction at a time. The 386 shares
these same features with the earlier
processors, but adds eight debug reg-
isters (two of which Intel reserves).
These debug registers control the hard-
ware breakpoint features.

Hardware breakpoints are much
more powerful than ordinary break-
points (such as those in DEBUG) for
two reasons. First, hardware break-
points don't actually modify your pro-
gram. This means that you can set
breakpoints anywhere, even in ROM.
Also, a program can't overwrite a break-
point when it modifies itself or loads
an overlay. Second, it is possible to
set breakpoints on data. A data break-
point triggers when your program ac-
cesses a certain memory location,

Microsoft's CodeView implements
a similar data breakpoint capability,
called “tracepoints.” To maintain com-
patibility with non-386 PCs, however,
CodeView doesn’t use 386 features.
As a result, CodeView checks trace-
points after the execution of each in-
struction. This, of course, is terribly
slow. By moving the tracepoints to
386 hardware, execution isn't slowed
down at all. Actually, yvou will usually
want to slow down execution just a
bit (see the discussion of the exact
bit). Even then, the slowdown in exe-
cution is imperceptible,

Because there are four debug ad-
dress registers in the 80386, it is possi-
ble to have four active breakpoints
at once. Each address register (DRO-
DR3) represents a linear address at
which a different breakpoint will oc-
cur, In protected mode, the concept
of a linear address is not straightfor-
ward. In real mode, however, a linear
address can easily be calculated from
a segment/offset pair. Simply multi-
ply the segment value by 10 hex (shift
left 4 bits) and add the offset. For

example, to set a data breakpoint at
B800:0020 (somewhere in the CGA
video buffer), you would need a lin-
ear address of:

Ba00 x 10 + 20 = B8020

Once you have loaded the address
registers, you must enable the break-
points you wish to use and tell the
processor what type of breakpoints
they are. This is done via the debug
control register (DR7). DR7 contains
bits to enable each breakpoint and
to set their type individually (see Fig-
ure 4). You will notice that DR7 has
global and local enable bits as well

as global and local exact bits (ex-

plained shortly). The difference be-
tween the various global bits and lo-
cal bits is only important when the
80386 is multitasking in protected

80386 Debugging Features

mode. For the purpose of this article,
they are the same. i

The Exact Bits
The exact bits are flags to tell the
803806 to slow down. At first glance,
this doesn’t seem to be helpful, but a
detailed look at the 80386 architec-
ture reveals the purpose of this bit.
The 80386 gains some of its speed
by overlapping instruction fetches and
data fetches. This is an excellent idea
when executing code, but causes prob-
lems in debugging data. Without the
exact bit set, a data breakpoint will
not occur at the instruction that caused
the data access! Being somewhat of
an inconvenience, Intel included the
GE/LE bits. With either (or both) of
them set, data breakpoints will occur
immediately after the instruction that
caused them, although the processor

% i 0
| |] AEAREEN
Len |RW | Len AW |Len RW|Len RW G G|L G‘ L| G| LIG| L|GiL
X XXX
|:3 3 2 2 1 1 0 |I:l o EE3|3|2|ETlT!DG
I - el | 1
Legend:
X = Reserved bit, do not use
Len = Breakpoint length
HW = Breakpoint read/write status
GE = (Global exact
LE = Local exact
GO0-G3 = Global breakpoint enable (breakpoints 0-3)
LO-L3 = Local breakpoint enable (breakpoints 0-3)
GD = General Detect

Figure 4: Bils coniained in DR7 to enable and set the type of breakpoinis

31 0
| | | BE5E| ' || BElB BB

X x| x]x x| xix x| x| % x| x] x|x] x :xxxx|xxxx-x ||
|V A A R I b T|S D] | | | 1212110

Legend:

X = Reserved bit, do not use

BO-3 = Breakpoint occurred

BD = lllegal access to breakpoint registers

BS = Single step interrupt occurred

BT = Task switch occurrad

Figure 5: Bils in DRG corresponding to the various breakpoints conditions

50
222

Dr. Dobb’s Journal, March 1990

The original Volume 15 book had a printing error:
pages 223-254 were missing and
pages 255-286 were repeated twice.

The missing pages were recreated in this PDF by

taking the equivalent pages from the March 1990
magazine issue.

you are monitoring a word at 2200:00F0
and a program writes a byte to 2200:
00F1, a breakpoint will occur.

Setting a data breakpoint with break-
386()will also set the global exact bit.
When all the data breakpoints are either
reassigned or deactivated, break386()
will clear the exact bit.

Because intl_386() always sets the
resume flag, you will find that a code

will lose a slight amount of speed.

Other Bits

All debug breakpoints generate an
interrupt 1. To distinguish the various
breakpoints, you must read the de-
bug status register (DR6). DRO has
bits corresponding to the various break-
point conditions (see Figure 5). Note
the BT flag at bit 15. As with the local
bits in DR7, only multitasking sys-
tems use the BT flag. Therefore, the
flag is not considered in this article.
The 386 never clears the bits in DRG,
s0 after you determine what caused
the interrupt, you should clear DR6.

The Only Other Bit We Haven't
Discussed is . . .

With the general detect (GD) bit set
in DR7, the 80386 prohibits access to
the debug registers. Any attempt to
access the debug registers will cause
an interrupt 1 with the BD flag set in
DR6. Intel’s in-circuit emulator uses
this feature, although you can use it
if you have any reason to disable or
control access to the debug registers.
When a GD interrupt occurs, the in-
terrupt handler is invoked and the
GD bit is cleared. Otherwise, the rou-
tine would fault (with an endless loop)
when the interrupt routine attempted
to read DRG.

You can decide from the interrupt
routine whether to terminate the user
program, or to allow access to the regis-
ters. BREAK386does not use the GD bit.

The Resume Flag

The last consideration with breakpoint
interrupts is how to resume the inter-
rupted program. If we simply return
(as in a normal interrupt), there is
nothing to stop a code breakpoint
from occurring again immediately. The
resume flag (found in the flag’s regis-
ter) prevents this from occurring. This
flag inhibits further debug exceptions
while set, and resets automatically as
soon as one instruction successfully
executes. Control of the resume flag
is automatic in protected mode. Han-
dling it from real mode, however, is
somewhat of a trick, as seen in

BREAK386. — AW,

Dr. Dobb's Journal, March 1990

51
223

52
224

386 DEBUGGING

breakpoint that immediately follows a
data breakpoint won't work. I'll show
how this can be rectified shortly.

Because INT and INTO instructions
temporarily clear the trace flag, BREAK-
380 will not single step through inter-
rupt handlers. If you wish to single
step through an interrupt routine, you
will have to set a breakpoint on its first
instruction. A replacement for intl
386() might emulate INT and INTO
instructions to solve this problem.

Because BREAK386 uses BIOS key-
board and video routines, take care
when placing breakpoints in these rou-
tines. In addition, single-stepping BIOS
keyboard and video routines should
be avoided. If you must debug in these
areas, reassemble BREAK386 so that it
doesn’'t use BIOS (see the DIRECT
equate in BREAK386.ASM). Note, how-
ever, that many of its features will no
longer function. Finally, you should
avoid setting breakpoints in BREAK386's
code or data.

BREAK380.INC contains two mac-
ros, traceon and traceoff, that can be
used to control tracing. You may insert
them anywhere in your code to enable
or disable tracing. Remember, how-
ever, that you will see the traceoff macro
as well as your own code when single
stepping.

The function clear386() must be
called prior to exiting the program. This
turns off the breakpoint handlers. If
vou fail to call clear3Soc) for any rea-
son (a control-break, or a critical er-
ror), the next program that uses a loca-
tion you have breakpointed will cause
the break to occur. This can have un-
fortunate consequences because your
interrupt 1 handler is probably no longer -
in memory. If you find that you have
exited a program without turning off
debugging and you have not encoun-
tered a breakpoint, run DBGOFF (List-
ing Six, page 104) to turn off hardware
debugging,

With some care, BREAK386 can be
used with other debuggers. In Code-
View, for example, BREAK380 seems
to work fine, as long as you are not
single stepping (via CodeView). When
yvou single step data breakpoints will
be ignored and BREAK386 code break-
points will “freeze” CodeView at that
step. If you are using BREAK380 with
CodeView, it is probably a good idea
to leave the code breakpoints and sin-
gle stepping to CodeView.,

Detailed Program Operation

BREAK386 (Listing One) begins with
the .386P directive, which ensures that
MASM 5.0 will generate references to
the debug registers. Be careful to place
the MODEL directive before the (386D,

Dr. Dobb's Journal, March 1990

JB86 DEBUGGING

(continued from page 52)

otherwise 32-bit segments will be gen-
erated (which doesn't work well with
unmodified DOS).

The parameters you may want to
change are near the top of the source
file. The equate to DIRECT controls the
video mode. If DIRECT is 0, BREAK386
uses BIOS for input and output. If,
however, vou want to poke around in
the kevboard or video routines, you
must set DIRECT to 1. This causes
BREAK3806 to use direct video outpul
for the debug dump. It will share the
screen with your program (no video
swapping) and breakpoints will simply
terminate the program in a similar man-
ner to the "A” command mentioned
carlier,

You can change the STKWRD equate
to control how many words are dumped
from the stack when using int1_386().
Setting STKWRD to zero will completely
disable stack dumping. Similarly, if you
set INTSTACK to zero, the display will
not show the [P/CS/FLAGS at the top
of the stack. If you are writing your
own interrupt handler and don't need
int1_386(), you can assemble with EN-
ABLE INT1 set to zero to reduce
BREAK380's size.

The operations of start386(), cledr-
3860), and break386()are fairly straight-
forward. The implementation of it l_
38060) deserves some comment. It is
important to realize that nti_386()
only debugs non-386-specific programs
because it only saves the 16-bit regis-
ters and the B086 segment registers
(intl_380() does not destroy FS and
GS). Because int1_386(Jonly runs on
a 380, it does use the 32-bit registers.
You can easily modify intl_386() to
save all the 386 registers, but it requires

more space on the interrupted pro-
gram's stack.

The most difficult aspect of the inter-
rupt handler is managing the resume
flag. The code below label ¢1 converts
the three words at the top of the stack
into six words so that setting the re-

2- and 4-byte data
breakpoints must be
aligned according 1o

their size. For example,
it is incorrect to set a
2-byte breakpoint at

location 1000:0015

becauise that location is
on an odd byte

sume flag is possible. There are three
things to remember about the way the
resume tlag is managed:

1. As mentioned earlier, fn2f1_386f Jal-
ways sets the resume flag. As a conse-
quence, a code breakpoint that occurs
immediately after a data breakpoint will
not cause an interrupt. This is due to the
resume Hag being set even though the
instruction that generated the data break-
point has already executed. When the
program restarts, the next instruction

retcode = break386(n,type,address);
where:
n is the breakpoint number (from 1 to 4).

meaningful.

0000:0000 (or a far NULL in C).

parameter is not checked for validity.

The types available are:

BP CODE

BP DATAWI
BP_DATARW1
BP DATAW?2
BP DATARW?2
BP DATAW4
BP DATARW4

type is the type of breakpoint. This should be one of the manifest constants defined in
BREAK386.H (or BREAK386.INC). If you are clearing the breakpoint, the type is not

address is the address to set the breakpoint. This must be a far address (that is, one
with both segment and offset). If you are using small model C, you should cast the
pointer to be a far type (see the example). To clear a breakpoint, set address to

retcode is returned by the function. A zero indicates success. A non-zero value means
that you tried to set a breakpoint less than 1 or greater than 4. Note that the type

- Code breakpoint

- One byte data write breakpoint

- One byte data read/write breakpoint
- Two byte data write breakpoint

- Two byte data read/write breakpoint
- Four byte data write breakpoint

- Four byte data read/write breakpoint

Figure 2: The parameters vequired by break3806()

54

will execute with the resume flag set.
This could be rectified by not setting
the resume flag in the interrupt handler
when processing data breakpoints.

2. An interrupt handler written entirely
in C has no way to manipulate the
resume flag properly. Listing Seven,
page 104, however, shows two assem-
bly language functions that allow you
to write your handler in C. (See the
next section for more details on writing
C interrupt handlers.)

3. Inreal mode, hardware interrupt han-
dlers (for example, those in the BIOS)
will probably not preserve the resume
flag. This means that if your code runs
with interrupts enabled, there is some
chance that one breakpoint will cause
two interrupts. This chance increases
greatly if interrupts remain disabled dur-
ing the interrupt 1 processing. Why is
this true? If the 80386 receives a hard-
ware interrupt just before executing an
instruction with the resume flag set, it
will process that interrupt. When the
interrupt returns, the resume tlag is clear
and the breakpoint occurs again. When
interrupts are disabled during break-
point processing, it is far more likely
that an interrupt is pending when the
program restars. If interrupts were en-
abled while processing the debug in-
terrupt, however, there is little chance
of this happening. If it does, simply
press “C" (when using int1_386().

Advanced Interrupt Handlers in C

It is possible to write an interrupt han-
dler completely in C to monitor data
breakpoints. The handler must be de-
clared as a far interrupt function. For
example, the following tunction could
be linked with the example in Listing
Five:

void interrupt far
new 1 Res,Rds,Rdi,Rsi,Rbp,Rsp,Rbx, Rdx,
Rex,Rax)
{
printf("\nBreakpoint reached.\n");

}

By calling setup386new1() instead of
setp3860int1_386), newl(Jwill be in-
voked for every breakpoint. Your func-
tion can read and write the interrupted
program’s registers using the supplied
parameters (Kax, Rbx, and so on). Keep
in mind that you cannot use this tech-
nique for code breakpoints. C's inabil-
ity to manipulate the resume flag will
cause an endless loop on a code break-
point.

Listing Seven, provides the functions
to write interrupt handlers in C. The
procedure is much the same as de-
scribed earlier, except that you must

(continued on page 57)

Dr. Dobbs Journal, March 1990
225

386 DEBUGGING

(continued from page 54)

call csetup386(Jinstead of setup386(J.
The argument to csetup386(Jis always
a pointer to an ordinary far function
(even in small model).

The actual interrupt handleris _cinti_
386¢(J. This function will call your C
code when an interrupt occurs. _cintl
_386(J passes your routine two argu-
ments. The first argument, a far void
pointer, is set o the beginning of the
interrupted stack frame (see Figure 3
for the format of the stack frame). The
second argument is an unsigned long
int that contains the contents of DRG.

All registers, and local variables on
the stack can be read using the pointer
to the stack frame (if you know where
to look). In addition, all values (except
SS) can be modified. It is usually wise
not to madify SP, CS, or [P,

_cintl_386(¢) switches to a local
stack. The size of the stack can be
controlled using STACKSIZE (near the
top of Listing Seven). Be sure to adjust
the stack if you need more space.

Listing Eight (page 105) shows an
example of an interrupt handler in C.
The example interrupt handler displays
a breakpoint message and allows you
to continue with or without breakpoints,
abort the program, or change the value
of a local variable in the loop() function,

Future Directions
Many enhancements and modifications
are possible with BREAK386. By alter-

Address Contents

PTR+28 |Code's stack

PTR+26 Flags

PTR+24 CS

PTR+22 IP

PTR+20 AX

PTR+18 CX

PTR+16 DX

PTR+14 BX :

PTR+12 S

PTR+10 BP

PTR+8 S1

PTR+6 D1

PTR+4 ES

PTR+2 DS i

Al e -
(PTR)

Example:

To read AX use:
n="((unsigned int far *)PTR+10);

Here, we add 10 to PTR rather than 20
since PTR is cast to an unsigned int
pointer and each unsigned int is two

bytes long.

Figure 3: Stack frame passed to the €
interrupt bandler

Dr. Dobb's Journal, March 1990
226

ing the words on #nt1_386(Js stack, for
example, you can modify registers. You
can redirect output to the printer (al-
though you can screen print the display
now) by replacing the OUCH routine.
Perhaps the most ambitious enhancement
would be to use BREAK3806 as the core
of your own debugger. You could write
a stand-alone debugger or a TSR de-
bugger that would pop up over an-
other debugger (DEBUG or CodeView).

Keep in mind that 386 hardware break-
points aren’t just for debugging. The
data breakpoint capability has many
uses. For example, you might want to
monitor the BIOS keyboard typeahead
buffer’s head and tail pointers 10 see
when a keystroke is entered or removed.
In this manner you could capture the
keyboard interrupt in such a way that
other programs couldn't reprogram your
interrupt vector,

You can also use data breakpoints
to detect interrupt vector changes or
interrupt processing. Some assembly
language programs could use data break-
points for automatic stack overflow de-
tection. Programs that decrement the
stack pointer without using a push in-
struction (Microsoft C programs, for ex-
ample) are not candidates ftor this type
of stack protection,

Debugging with 380 assistance is quite
practical and useful. The programs pre-
sented here should get you started and
help vou develop your own programs
with this powertul hardware feature.

Bibliography

Turley, James L., Advanced 80386

Programming Techniques, Osborne

McGraw-Hill, Berkeley, Calif., 1988,
Intel Corporation, 80386 Program-

mers Reference Manual, Intel Corp,,

Santa Clara, Calif., 1986.

Availability

All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif. residents add sales
tax) to Dr, Dobb’s Journal, 501 Galves-
ton Dr., Redwood City, CA 940063, or
call B00-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the DDJ Forum on Compu-
Serve (type GO DDJ). The DIJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
l-stop bit. Press SPACEBAR when the
system answers, type: listings (lower-
case) at the log-in prompt.

DDJ

(Listings begin on page 96.)

Viote for your favorite feature/article.
Circle Reader Service No. 4.

57

Part 11

Managing Multiple

Data Segments Under
Microsoft Windows

The segment table provides a little-known way of managing

multiple data segments

Tim Paterson and Steve Flenniken

n last month’s installment, we pre-

sented a method for managing mul-

tiple data segments under MS Win-

dows using a little-known Windows

feature, the segment table, along
with a library of macros and functions
to assist in applying the technique. For
this month’s installment, we've prepared
a sample Windows program called “seg-
ments” that demonstrates the segtable
library. In its “random action” phase, it
randomly allocates, reallocates, and frees
global memory. A window displays sta-
tistics about each memory block, in-
cluding its pSeg (the address of its Seg-
mentTable entry), the current segment
number, the previous segment num-
ber, and the number of times it has

Tim is the original author of MS-DOS,
Versions 1.x, which be wrote in 1980-
2 while employed by Seattle Compuiter
Products and Microsoft. He was also
the founder of Falcon Technology,
which was eventually sold to Phoenix
Technologies, the ROM BIOS maker.
Steve formerly worked at Seattle Com-
puter Products, Rosesoft (makers of Pro-
Key), and is now with Microrim, work-
ing with 082 and Presentation Man-
ager, Both can be reached c/o DDJ,

58

moved since it was allocated. A timer
function is used to keep the window
continuously updated, even when an-
other application has the input focus.
The sample application in Listing One
(page 100) uses one segment as the
place to keep track of all the other
segments that it fiddles with and dis-
plays in the window. That segment
contains an array of structures, one for
each additional segment. Because it is
referenced so often, the macro FAR-
DATAP is defined to return the far
pointer to the first structure in this seg-
ment. Listings Two through Five (be-
ginning on page 108) provide the rest
of the files required by the application.
The menu bar is used to start and
stop the random action mode. When
on, the timer function picks one of the
structures. If the structure does not yet
have a pSeg, it allocates one with a
random amount of memory. If it al-
ready has a pSeg, it will do one of three
things: Reallocate the pSeg with a difter-
ent memory size; free the data, but
keep the pSeg, or free the pSeg alto-
gether. Whenever a segment is allo-
cated or reallocated, a text string con-
taining the last action (A" for allocate
or “R” for reallocate) and the size of the

segment (for example, “1484 bytes™)
is copied into the segment as its data.
Whether the random action is on or
off, the function checks to see it any
of the segment numbers in the seg-
ment table have changed, and updates
the display window if they have.

This sample is a useful demonstra-
tion in two ways. First, it has examples
on how to code with the segment ta-
ble. It includes many references to its
far array of memory descriptor struc-
tures, and shows how IFP (indirect far
pointer) parameters are passed to the
functions strepyifp() and strlenifp().
Second, it makes the segment table
visible through a window so that its
activity can be observed. As other ap-
plications are run (with random action
stopped), you can see the effects as
Windows keeps rearranging memaory,
Unless, of course, you are using LIM 4.0
EMS. which lets Windows just swap the
data out without physically moving it.

Read-Only Data

Some applications use large amounts
of read-only (constant) data. An exam-
ple of this is Microsoft Excel, which is
written in C and compiled into pcode,
not native 8086 code. The pcode is

Dr. Dobb's Journal, March 1990
227

60
228

(continued from page 58)

data, not code, because it is never actu-
ally executed. Other applications could
simply have large amounts of data in
the form of tables or other structures.

Like code, read-only data should be
marked as discardable in the linker defi-
nition file. This allows Windows to throw
it away to make room, but reload it from
disk later when needed. Another good
practice is to keep segment size to less
than 10K, the size of the LIM 3.2 ex-
panded memory page frame. Windows
can then choose to use space in EMS
for those segments that fit, entirely trans-
parent to the application.

Code and read-only data don't sound
any different so far, but there is an
important distinction. Windows keeps
track of how often each code segment
is used, in order to help it make a good
decision on discarding one when it
needs to free some memory. It does
this with the reload thunk. Every far
call to a discardable segment actually
calls a thunk specific to that entry point.
If the segment being called is present
in memory, the thunk will contain a
jump to the entry point. If the segment
is not loaded, the thunk will cause Win-
dows to load it. Either way, the thunk
also notes the fact that a call to that
segment was made. Windows uses a
least-recently used (LRU) algorithm for
determining the best segment to discard
when memory is needed. The thunks
are the source of its information.

The easiest way to deal with discard-
able read-only data segments is to put
a little code in them, These lines of
assembly language belong in cach seg-
ment (but with a unique entry point
name for ecach):

Load_This_Segment:
MoV AX.Cs
retf

To ensure that a segment is loaded,
and to find out where, call this entry
point. The return value in ax is the
segment of the data, The call o this
entry point is, of course, actually a call
to a thunk that ensures the segment is
loaded.

The segment number returned by
this call can be stuffed into an empty
entry in SegmentTable so that it will
stay updated in case of movement. But
recall that this segment can also be
discarded. In that case, Windows will
update the segment table with the (even-
numbered) handle for that segment.
This complicates things a bit. Now we
could make a reference to the segment
table and find an even number, indi-
cating that the segment we want has
been discarded. Calling the entry point
(the reload thunk) is the easiest way

WINDOWS MANAGEMENT

to bring the segment back.

Once the segment has been loaded,
we can use it as much as we want, as
long as Windows doesn't discard it.
But if we never call the segment’s entry
point again, Windows will think we've
stopped using it — afterall, it's the calls
through the thunk that keep track of
usage. Without periodic calls to the
entry point, this segment will be one of
the first to be discarded, no matter how
much we've actually been using it,

Fortunately, Windows provides a
mechanism to remind us to call the

Some applications use
large amounts of read-
only (constant) data.
An example of this is
Microsoft Excel

entry point periodically. On a regular
basis (typically every fourth timer tick,
or 4.5 times per second), Windows per-
forms an “LRU sweep.” One of the
things Windows will do during the LRU
sweep is to fill part of our segment
table with zeros. The number of words
set to zero is specified in SeementTable/1f

the zero fill starts at SegmentTable/2] In
addition, SegmentTable/ 1] itself is also
set to zero, which means nothing will
be zero-tilled again until it is reset to
some value. This use of Segment Table/ 1/
sugeests using a macro to give it the
name cwClear.

The idea is to set aside the first por-
tion of the segment table for read-only
data. At every LRU sweep, Windows
will zero fill the segment numbers that
were stored in there. When we try to
access a segment number that has been
zeroed, we will see an even number
and conclude it was discarded. Then
we call the segment's entry point to
reload it, and the thunk will record the
activity, Hopefully, this will prevent the
segment from being discarded while it
is still needed. The overhead of zero
filling the table and calling the entry
point is quite small compared with the
time to reload a segment from disk.

Note that the segtable library, as writ-
ten, is not set up for this type of use.
The non discardable data segments,
such as segDgroup, must be moved
above the zero-fill area in SegmentTable.
Because there are a fixed number of
read-only data segments, they would
probably each have their own fixed

Dr. Dobb's Journal, March 1990

62

(continued from page 60)

segment table entry. New access mac-
ros would be required that could deal
with a segment that was not present.

Debugging Considerations

Microsoft considers the ideal environ-
ment for running Windows to be a
80386 computer with extended mem-
ory running 386MAX by Qualitas of
Bethesda, Maryland. 386MAX puts the
computer into Virtual 8086 Mode and
manages memory by using the 380's
paging mechanism. It provides three
important benefits for Windows. First,
it fully emulates LIM 4.0 expanded mem-
ory (EMS). Second, it performs the same
function as the Windows program HI-
MEM.SYS, making available the first 64K
of extended memory for use by Win-
dows. Third, it allows TSR programs
such as mouse and network drivers to
be loaded out of the way of conven-
tional memory — the base 640K mem-
ory space.

When Windows finds itself loaded
into a computer with LIM 4.0 EMS, and
there's a fair amount (like 250K) of
conventional memory left, it will use
“large frame” EMS. This means that the
base 640K memory space becomes part
of the EMS page frame., Windows can
then swap different logical memory
pages into the base 640K,

While this is a great way to run Win-
dows, especially when running several
large applications, it's not so good for
debugging with Symdeb. Symdeb seems
to get confused by the EMS swapping,
and we've gotten some very strange
results. Now we always disable 386MAX
whenever we will be debugging a Win-
dows program with Symdeb. On the
other hand, CodeView for Windows is
apparently so large that Windows
doesn't use large frame EMS. Code-
View is so big that it requires EMS to
run, and it works fine with 386MAX.

While my comments about EMS ap-
ply generally to Windows debugging,
there is a booby trap specific 1o work-
ing with a segment table (Naturally
we're telling you this because it hap-
pened to us.) Recall that, during Win-
dows’' LRU sweep, cwClear (Segment-
Table/1)) is used as a count of words
in the segment table to zero fill. Should
this word get accidently set through
a programming error, unbelievably
strange results can occur. A random
value stored in cuwClear will zero out a
random amount of DGROUP, possibly
including your stack. What makes this
bug so nasty is that the LRU sweep is
driven by the timer tick interrupt, 5o
the data gets wiped out without you
ever seeing how. Even a 386 hardware
breakpoint will not necessarily catch it,

WINDOWS MANAGEMENT

(In our experience, the hardware break-
point caught this bug when debugging
with a serial terminal, but not when
using a monochrome monitor.)

Extensions

As written, the segtable library and as-
sociated macros assume that the seg-
ments in the table are always present
in memory. This is guaranteed by the
fact that none of the segments in the
table are marked as discardable. Ex-
cept for DGROUP, they are all allocated
by SegmentAlloc(J, which does not set
the GMEM_DISCARDABLE flag.

If the use of the segment table was
expanded to include read-only segments
as discussed above, then there would
be discardable segments in the table.
An even value in a table entry would
signify that that segment had been dis-
carded. More complicated access mac-'
ros would be needed to account for
this possibility and to provide the mecha-
nism to reload the segment. The mac-
ros could take one of two approaches.
The first method would be to always
call a near function for each segment
reference, and that function would test
for an even entry and perform the re-
load if needed. The alternative is 1o
make the test for an even entry in line,
and call a function only when reload-
ing is necessary. In fact, having both
of these forms available might be handy
so that the speed/size tradeoff can be
made on a case-by-case basis. It is likely
that read-only segments would be used
only in special ways, so that many seg-
ment table references could still assume
the segment was always present and
use the original, more efficient macros.

We have been describing the whole
idea of the segment table as being suit-
able for large applications with multi-
ple segments of data. There is, how-
ever, 4 limit on how much data a Win-
dows program can have. Being non-
discardable, the data must be present
in memory at all times. This usually
limits an application to not more than
300K under the best conditions. Large
frame EMS does not increase this limit,
but it does allow each of several appli-
cations running simultaneously to have
about as much data space as if they
were running alone,

The problem is the 640K limit on con-
ventional memory, and one possible an-
swer is EMS. Windows will allow individ-
ual applications to control the small (LIM
3.2-style) EMS frame, which provides four
16K portholes into the EMS space. It is
completely up to the application to man-
age its expanded memory, using inter-
rupt 67H to access EMS functions.

One way to go about this is to inte-
grate EMS management with the mem-

Dr. Dobb’s Journal, March 1990
229

ory management functions of the
segtable library. Any data segment of
less than 16K is a candidate for alloca-
tion in EMS instead of using GlobalAl-
loct). SegmentAlloc() could be modi-
fied to do this, putting the EMS seg-
ment into the segment table and re-
turning a pSeg. In this way, the use of
EMS becomes completely transparent
to the rest of the application.

There is, however, a serious draw-
back. Because there is space for only
four EMS pages in the page frame, we
can’t allocate more than four pages
before we run out of places to put
them. Of course, the whole point of
EMS is that we can have many mega-
bytes of data, but we only need to use
a few pages at any one time. Some of
the EMS pages we allocate for data will
have to be mapped out of the page
frame — becoming momentarily inac-
cessible — so that others can be
mapped in when we need them.

Fortunately, the segment table mecha-
nism provides a handy way to do this.
pSegs are the handle by which the ap-
plication can refer to any chunk of
memory, whether conventional, acces-
sible EMS, or inaccessible EMS, If the
pseg points to an odd-numbered value
in the segment table, then that segment
is present; if it points to an even-num-
bered value, then it is not present. This
is exactly the same rule that is used for
read-only data segments.

To take this approach, the applica-
tion’s EMS manager must ensure that
EMS segments are odd. Whenever it
must change the EMS map, it will have
to update the segment table. When a
page is mapped out, its segment nume-
ber in the table must be found and
replaced with an even-numbered
marker. This marker must represent suf-
ficient information to make the page
accessible again. For example, 1 byte
of the marker could represent an index
into a table that includes the EMS han-
dle, while the other byte is the logical
page number. Remember that only 15
bits are available, because the least signifi-
cant bit must be zero.

The access macros must understand
how to deal with segments that aren’t
present, using the same general tech-
niques as they would for read-only seg-
ments. However, the segment is “re-
loaded™ by calling the EMS manager,
instead of by calling a Windows reload
thunk. The application’s memory man-
ager will need to have some reason-
able way to decide which logical page
to map out when a different one must
be mapped in. One approach would
be to approximate the LRU algorithm
by discarding the least-recently mapped-
in page. Then when two different seg-

Dr. Dobb's Journal, March 1990
230

ments, say A and B, are needed at the
same time, this can be ensured by the
sequence access-A, access-B, access-
A. The second access-A is required be-
cause the access-B might have caused A
to get mapped out. This could happen
only if A was already present at the start,

Microsoft's own
Windows applications
use all of the techniques

discussed here

so that the first access-A did nothing,

To support cases when more than
two segments were needed at once, a
locking mechanism could be used. This
would be similar to Windows' Global-
Lock() and GlobalUnlock(), except that
it would be handled by the applica-
tion's memory manager. A streamlined
alternative to making function calls for
locking would be to set aside one or
more special locations in the segment
table. The presence of the segment in
a special location would tell the mem-
Ory manager not to map it out,

If the computer has no (or not
enough) EMS, we can still do some-
thing to handle large amounts of data.
By using the segment table and some
additional help from Windows, we can
set up a virtual memory system — that
is, disk swapping. The key is to allo-
cate memory with the Windows func-
tion GlobalAlloc() by using the flags
GMEM_DISCARDABLE and GMEM_
NOTIFY. This tells Windows that it can
discard the memory if it needs to, but
to ask permission first. When Windows
notifies the application that it would
like to discard a segment, we can write
that segment to disk first, then stick a
marker for that segment in the segment
table. As with EMS, the marker will
represent the information needed to
reload the segment the next time it is
accessed.

The function that Windows will call
to ask permission to discard a segment
is set by using GlobalNotify(). This func-
tion is documented in the Windows 2.0
SDK update booklet, with additional
information in the Windows 2.1 SDK
update. The function we register with
Windows in this manner could be de-
clared as:

BOOL FAR PASCAL
NotiftyProc(lHANDLE hmem);

FULL AT&T C++: ANNOUNCING VERSION #2 2.0!

(yuidelines announces its port of version 2.0 of AT&T's C++ translator. As an
object-oriented language, C++ includes: classes, multiple inheritance, member
functions, constructors and destructors, data hiding, and data abstraction. Object-
oriented means that C++ code is more readable, more reliable, and more reusable.
And that means faster development, easier maintenance, and the ability to handle
more complex projects. C++ is Bell Labs’ answer to Ada and Modula 2. C++ will
more than pay for itself in saved development time on your next project.

C++

from GUIDELINES for the IBM PC: $395

Requires IBM PC-AT or compatible with 512K plus 384K extended memory.
Note: C++ is a translator, and requires the use of Microsoft C 4.0 or later.

Here is what you get:

extended memory support.

e Libraries for stream I/O and complex
math,

¢ C++ Primer, the definitive book on

¢ Sample programs written in C++.

e Printed installation guide and
documentation.

¢ 30-day money-back guarantee,

e The full AT&T v2.0 C++ translator with

C++ version 2.0 by Stanley B. Lippman.

NOW AVAILABLE FOR
UNIX V/386 - $495

To Order:
Send check or purchase order to:

GUIDELINES SOFTWARE, INC.
P.0. Box 6368, Dept. DDIJ
Moraga, CA 94570

To order with VISA or MC,
phone (415) 376-5527. (California
residents add sales tax.)

C++ was ported by GUIDELINES under license from AT&T.
Call or write for a free C++ information package.

CIRCLE NO. 351 ON READER SERVICE CARD

63

WINDOWS MANAGEMENT

(continued from page 63)

The argument is supposed to be the
handle of the segment being discarded.
However, the Windows 2.1 SDK up-
date says that in Version 2.03, it was
actually the segment number, not the
handle. This can be straightened out
for both versions by calling Global-
Handle(), which can take either the
handle or segment number as its argu-
ment, and will return them both, as
mentioned earlier.

NotifyProc() is a function in the ap-
plication, but it must be in a fixed code
segment. It will be called for each seg-
ment Windows would like to discard.
If the application wants the segment
locked, the function can return a false
(zero) value and Windows will not dis-
card it. The locking protocols could
be the same as we suggested for EMS:
Adding lock and unlock functions, and/
or reserving special locations in the
segment table. If the segment isn't
locked, NotifyProc() can write it to a
disk file that has already been created
for that purpose. Then it returns true
and Windows will reclaim the space.

Any of these extensions — read-only
data, EMS, disk swapping — may be
combined. Using any one of them re-
quires handling the case of segments
that are not currently accessible. Once
this jump has been made, the others
can be added with little or no addi-
tional change to the main body of the
application. Microsoft's own Windows
applications use all of the techniques
discussed here (a great deal of time
was spent using Symdeb on Excel in
preparing this article). While we ha-
ven't covered all of the procedures in
detail, these ideas can be used to build
Windows applications with virtually un-
limited data capacity.

Availability

All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif. residents add sales
tax) to Dr. Dobb’s Journal, 501 Galves-
ton Dr., Redwood City, CA 940063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS5-DOS, Macintosh, Kaypro).
Source code is also available online
through the DDJ Forum on Compu-
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the
system answers, type: listings (lower-
case) at the log-in prompt.

DDy
(Listings begin on page 106.)

Vote for your favorite featurefarticle.
Circle Reader Service No. 5.

Dr. Dobb’s Journal, March 1990

65
231

Object-Oriented

Programming in
Assembly Language

OOP applies equally well to assembly language and high-level

language programs

ne of the promises of the ob-
ject-oriented paradigm is that
it will reduce program com-
plexity and implementation
effort for many different types
of programs. Object-oriented program-
ming, however, is no panacea. It is a
technique, like recursion, that you can
apply in certain cases to reduce pro-
gramming effort. While there are cer-
tain types of programs whose object-
oriented implementation is better, ex-
amples abound where object-oriented
programming systems (OOPS) buy you
nothing. Nonetheless, object-oriented
programming techniques are a valu-
able tool to have in one's war chest.
OQOPS are nothing new. They have
been around since the late 1960s. Yet
the object-oriented paradigm was lan-
guishing until Object Pascal and C++
began generating mainstream interest,
The success of these languages dem-
onstrates that OOP is not the domain
of a few esoteric programming lan-
guages. Rather, object-oriented program-
ming is applicable to almost any pro-
gramming language.
still, assembly language may not seem

Randy is the designer of numerous bard-
ware and software projects, including
assemblers for a variety of systems. In
addition to consulting, be is currently
a part-time instrictor in computer sci-
ence at California Polytechnic Univer-
sity in Pomona and at UC Riverside.
He can be contacted at 9570 Calle La
Cuesta, Riverside, CA 92503,

66
232

Randall L. Hyde

like the place 1o apply the object-ori-
ented programming paradigm. But keep
in mind that people were saying the
same thing about Pascal and C five
years ago.

What does an object-oriented assem-
bly language program look like? A bet-
ter question to ask is, “What is the
essence of an object-oriented program,
and how does one capture it within
an assembly language program?” Once
yvou strip away the gloss and notation
convenience provided by languages
such as C++, you'll find that the two
main features of an object-oriented pro-
gram are polymorphism and inheritance.

Polymorphism takes two basic forms
In Most programming languages: static
and dynamic. The general idea, how-
ever, is the same. You call different
subroutines by the same name. Static
polymorphism provides notational con-
venience in the form of operator/func-
tion overloading in languages such as
C++. Static polymorphism uses the
parameter list, along with the routine’s
name (together they form the routine’s
signature), to determine which routine
to call. For example, consider the C
routines:

CmplxAddCC(C1, C2, C3);
T =CEHCS

CmplxAddCR(C1, C2, R1);
/*C1=C2+ToCmplx(R1);*/

CmplxAddRC(C1, R1, C2);
/*C1=ToCmplx(R1)+C2;*/

In C++ you could write:

CmplxAdd(C1, C2, C3);
CmplxAdd(C1, C2, R1);
CmplxAdd(C1, R1, C2);

and the C++ compiler would figure out
whether to call CmplxAddCC, CmplxcAdd-
CR, or CmplxAddRC. (Actually, you
could overload C++'s “+" operator and
use the three forms C1=C2+C3;, Cl=
C2+R1;, or CI1=RI1+(2; but the exam-
ple above would be still valid.)

Static overloading, while convenient,
does not add any power to the lan-
guage. The calls to CmplxAdd call three
different routines. CmpleAdd-C1,C2.C3)
calls CmplxAddCC, CmplxAdd (C1,C2R)
calls CmplxAddCR, and CmplxAdd-
(C1,K C2)calls CmplxAddRC. The C++
compiler determines which routine this
code will call at compile time. Static
polymorphism i1s a mechanism that lets
the compiler choose one of several
different routines to call depending
upon the calling signature,

Sometimes you may want to use the
same signature to call different rou-
tines. For example, suppose you have
a class shape in which there are three
graphical objects: circles, rectangles, and
triangles. If you have an arbitrary ob-
ject of type shape, the compiler cannot
determine which DERAW routine to call,
The program determines this at run
time. This allows a single call to draw
circles, rectangles, triangles at run time
with the same machine instructions.
This is dynamic polymorphism — de-
termining at run time which routine to
call. C++ uses virtual functions and Ob-

Dr. Dobb’s Journal, March 1990

0oFp

(continued from page 606

ject Pascal uses override procedures
and functions to implement dynamic
polymorphism.

Inheritance lets you build up data
structures as supersets of existing data
structures, This provides a mechanism
whereby you can generalize data types,
allowing you to handle various objects
regardless of their actual type, This lets
yvou define such diverse shapes as cir-
cles, rectangles, and triangles and treat
them as compatible structures.

Implementing Classes and Inheritance
Because structures and classes are

I[N ASM

closely related, it may be instructive to
look at the implementation of struc-
tures before looking at classes. Con-
sider S, a variable of the type in Exam-
ple 1. Somewhere in memory the com-
piler needs to generate storage for the
fields of 8. Traditionally, compilers al-
locate these fields contiguously (see
Figure 1). Indeed, Microsoft's assem-
bler (MASM) allows you to declare struc-
tures in a similar fashion, as shown in
Example 2. If § provides the base ad-
dress of this structure, $+0 is the ad-
dress of S.1, 5+2 is the address of §;
and S+4 is the address of S.c.

Now consider the case of a pair of

Example 1: The variable S

struct
]

int i;
int 9:
char *c}

Example 2: Declaring
structures in MASM

gtruc
dw 7
i dw ?
C dd T
STvpe ends

sType

Example 3: C++ classes

Example 5: One approdach
to implementing Sc and Tc

C++ classes (5¢ and 7o) in Example 3.
Pointers to objects (pS and pT) may
point at an object of the prescribed
type or to an object that is a descendant
of the pointer’s base class. For example,
PS can point at an object of type 5S¢ or
at an object of type Tc. Remember, ac-
cessing 8.7 is equivalent to (int) ¥ps+2),
so if pS points at an object of type Tt
the j field must also appear at offset
two within the structure. For inheritance
to work properly, the common fields
must appear at the same oftset within
the structure (see Figure 2).

Additional fields in the subclass often
appear after the fields in the parent
class, so most compilers implement class
Tc as in Example 4. Note that the off-
sets to i, f, and ¢ are the same for both
Scand Tt

When I first began exploring how
to implement inheritance in assembly,
I got the bright idea of using macros
inside structure definitions to handle
the problem of inheritance. Briefly, 1
wanted to implement 5S¢ and 7c as in
Example 5. Unfortunately, MASM
doesn't allow you to expand macros
or strucs inside a structure. Disap-
pointed, I tried the brute force way to

class 5S¢

| _ implement Sc and Tgc, as illustrated in
s 41 Sexeeia maces Example 6.
s s ; aw Unfortunately, I'd forgotten that
e Wi fa MASM doesn't treat these symbols as
Tc Pl part of the structure. Names such as i,
Tclass Te:Sc oty | Wourd J. ¢, and so on must be unique in the
' it o 2 sy program. As you can plainly see in
i e d ad. Example 6, T declared i twice, and the
’ - assembler gave me a “redefinition of
c o symbol” error. Almost ready to give
Example 4: The way most compilers o Selbens up, I tried the method in Example 7.
implement a class like Tc ; MASM simply equates the field names
= e to the offsets within the structure. So it
struct Te T struc i o3 equates i to zero, jto two, and so on.
R A MASM does not associate 1 with labels
it 37 ¢ a4 of type Sc. You can use the symbols 7f
ot bs i and 8./ in your program. Because the
i Sl " operator behaves like the "+ op-
erator, T.jis just like 7+2.

For Te to inherit the fields of Sc, all
we have to do is reserve enough space
at the beginning of the 7¢ structure for

[High memory
High memary fr 7
|-) s d | pT+10
: -1 € | - E
&S+4 | | T | R = : : K : pT+8
- = l 15 _ - -
o] SR |] e — o s
Ii pS+2 | J k! o I iR | pT+2
Low memory pS+0 [i 2 e i 1 P40
, Low memory

Figure 1: Storage allocation for S

68

Figure 2: Storage allocation for*pT and*pS

Dr. Dobb's fournal, March 1990
233

00P

(continued from page 68)

each of the fields of Sc. Above. I stuck
in the two DW and the DD pseudo-
opcodes to reserve space for the 4, j,
and c fields. This technique might get
inconvenient if the number of inher-
ited fields is large. The code in Exam-
ple 8 solves this problem.

The first DB pseudoopcode in Tc
reserves the necessary space for the
fields Tc inherits from Sc. Likewise, U
(which is a subclass of To) reserves
space at the beginning of the structure
for the fields inherited from Tc and Sc.
The code in Example 8 works great if
vou don't need to initialize any of the
fields inherited from 5S¢, if you need to
initialize some fields, you'll have to use
the brute force method and redeclare
space for each field.

Methods

The earlier paragraphs discuss how to
implement objects whose fields are all
variables. What happens when you in-
troduce methods? If you're not over-
loading a method, you can treat it in
the same manner as any other assem-
bly language procedure and call it di-
rectly. If you are overloading a method,
vou must call it indirectly via a pointer
within the object.

IN ASM

Consider the C++ class declaration
in Example 9. The assembly code im-
plementing this class is shown in Ex-
ample 10. To call § geti, you would use
the 80806 instruction: CALL S geti.

Because 5. getiis a double word mem-
ory variable, the CALL instruction will
call the procedure 5geti, which points
at Sc_geti. The fact that we're calling the
methods indirectly will be useful when
we look at overloading a little later.

THIS

Suppose we have three instances of
class Sc, say §1, S2, and $3 declared in
assembly language as follows:

L]

51 Sc
b Pl &
53 5C

S1.geti, 52 geti, and 53 . geti all call the
same procedure (call it Sc_geti). How
does Sc_geti differentiate between S7.4,
524, and 53.#7 In object-oriented lan-
guages such as Object Pascal and C++,
the compiler automatically passes a spe-
cial parameter named thisto the method.
this always points at the object through
which you've invoked the method.
When you execute 51.geti, the com-
piler passes the address of §7in thisto

geti. Likewise, the compiler passes the
address of $2 in this when you call
52 geti.

You can pass this to a method just
as any other parameter. Because the
most efficient way of passing parame-
ters is in the 8080's registers, I've adopted
the convention of passing this in the
ES:BX registers. The Sc_geti method
would look something like Example
11 (assuming we're returning 7 in the
AX register). This example demonstrates
a major problem with object-oriented
programming — it is very inefficient.
To load S$1.7into AX, see Example 12,
This requires six instructions where,
logically, vou should only need one
(miov ax, S1.i). Welcome to the won-
derful world of object-oriented program-
ming! Yet circumventing all this over-
head by loading $1.7 directly into AX
will eliminate the benefits of object-
oriented programming,

Actually, this isn’t as bad as it looks.
A good part of the time ES:BX will
already be pointing at the object you
want to access, Nevertheless, the call
and return are considerable overhead
just to load the AX register with a word
value. Stroustrup anticipated this prob-
lem when designing C++ and he solved
it by providing inline functions (a.k.a.

Example 6: The brute force
method of implementing Sc and Tc

Bo 5t Fuc
i dw
3 W
a dd
S5c ends

Te struc
L dw
y dw
o dd
k w
4

gd End end =gl msd

ands

re

Example 7: Yet another attempt
at implementing Sc and Tc

3

st ruc
W

W

dd
ands

=l e g

[T R
o]

=3
L}

ELEUS
duw
dw
dd

gl bad bk S g

Te ends

(4 5]
=} L3
Lo I)

Example 8: The solution to
implementing Sc and Tc

= 8t Fuc
1 idw !
1 idw 7
& idd 1
LT ends
Te &k Fu
dh (size Sc) dup (%)
] dw 7
d dd ?
Te ends
L struc
db {size Tc) dup ()
] i 7
e ands
] Bo
I Te
1 Uc

class 5S¢
]
int 397

ciar Gl
pubklic:

int getl|] {return i}:
int getlq] [returm J};
vold seti(x) int xx [
void setjix] inc %7 {9

o

Example 9: A C++ class declaration

f* Ignore the fact that C++ ¥/
¥ would implement these Ji
71y f* methods in=line, LE

Example 10: Assembly code for
implementing the code in

Example O
Se st ruc
i dw 2
3 dw ?
C dd ¥
geti dd Sc_geti
get j dd So_get]
seti dd 5C_sgetl
zet j dd c_get]
B ends
5 e

70
234

Dr. Dobb's Journal, March 1990

00P IN ASH

(continued from page 70)

macros). We can use this same tech-
nique in assembly language to improve
efficiency as Example 13 illustrates. This
code snippet demonstrates another con-
vention 1 adhere to: I make macros for
all method calls, even those that are
actual calls. This lets me use a consis-
tent calling format for all methods,
whether they are actual subroutines or
are expanded in-line,

There is one major drawback to ex-
panding a procedure inline; you can-
not overload procedures (C++’s inline
functions suffer from this as well. You
cannot have an inline virtual function).

Therefore, you should only use this
technique for those particular methods
that you will never need to overload.
Fortunately, the macro implementation
makes it easy to switch to a call later if
you need to overload the procedure.
Just substitute a call for the inline code
inside the macro.

Polymorphism and Overloading

Overloaded procedures allow the
“same” method to perform different
operations, depending upon the object
passed to the method. Consider the
class definitions in Example 14. Rect
and Circle are types derived from Shape.

Example 11: The Sc_geti method

_THIS equ ag: [bx]
Sc_geti proc far
nov 3y, THIS.i
ret
Sc geti andp

Example 12: Loading S1.1 into AX

mov by, =zeg 51

Mo e, bx

Moy by, cffszetr 51

call §l.getd ;Assuming 51

15 1n the data seg

Example 13: Improving efficiency

Get i macro

ancm

; expand in-line in our code:
i

_Printi macro

gndm
Feti

_Prined

; Inline expansion of geti to improve efficiency:

Mo ax, ‘THIS.i

; Perform actuwal call to routines which are too big to

call THIS.Printi

seet L into AX.

sCall Prainti routine.

Example 14: Typical class definitions

iDefault (overridden) DRAW routine

i rve ace for coordinates
iBese SF

rReserve space for coprdinates

shaps struc
ulx dw ? iUpper left X coordinate
uly dw 7 ;Upper left Y coordinate
lrx il 7 jLower right X coordinate
lry dw ¥ ;Lower right Y coordinate
Draw dd Shape Draw
Shape ends
Rect struc

dw 4 dup (7)

dd Rect Draw iDraw & rectangle
Rect ands .
Cirgle struc

dw § dup ()

dd Circle Draw ;Draw a circle
Circle ends <

72

IF ES:BX points at a generic shape (that
is, ES:BX points at an object of type
Shape, Rect, or Circle) then CALI_
THIS Draw will call Shape_Drauw,
Rect_Draw, or Circle_Draw, depend-
ing upon where ES:BX points. This lets
vou write generic code that needn't
know the particular details of the shape
it's drawing. The object itself knows
how to draw itself via the pointer to the
specific draw routine.,

Allocation of Objects

High-level object-oriented languages
such as Object Pascal and C++ tend to
hide many of the allocation details from
yvou. In assembly language, naturally,
the programmer has to handle all of the
allocation details. Although a complete
discussion of dynamic allocation of ob-
jects is bevond the scope of this article,
the subject is so pervasive that it war-
rants a brief mention.

Static allocation of an object in as-
sembly language is quite simple. If yvou
have the shape class definitions (sheape,
rect, and circle) mentioned earlier, you
can easily declare variables of these
types using declarations of the form:

MyRect rect
MyCircle circle
MyShape shape

This automatically fills in the DRAW
field for these variables (the linker/
loader fills in such addresses when it
loads the program into memory), What
happens if you are dynamically allocat-
ing storage for an object? Assume we
have a routine, alloc, to which we pass
a byte count in CX| and it returns a
pointer to a block of memory that size
in ES:BX. Now suppose we allocate a
rectangle with the code in Example 15.
Alloc will not be smart enough to fill
in the pointer to the rect. DRAW rou-
tine. This is something we'll have to
do ourselves. This requires the four
instructions in Example 16.

Eight instructions may not seem like
a lot to create a simple object. Keep in
mind, however, that our simple shape
object only has one overridden method.
If there were a dozen methods, you
would need 52 instructions. Clearly, a
CREATE procedure begins to make a
lot of sense, Each subclass (shape, rect,
and circle) will need its own CREATE
method. CREATE is not a method you
normally overload, because during the
creation process you know exactly the
type of object you're creating. By conven-
tion, the CREATE methods [write al-
ways allocate the appropriate amount
of storage, initialize any important fields,
and then return a pointer to the new
object in ES:BX. The code in Example
17 provides an example, using the rect

Dr. Dobb's Journal, March 1990
235

and circle types. To manipulate these
objects, we need only load the appro-
priate pointer into ES:BX and access
the appropriate fields or call the ap-
propriate methods via this.

Other Conventions

While writing object-oriented programs
in assembly language, I've found cer-
tain guidelines helpful in the initial de-
sign phases (that is, before having to
take efficiency into consideration). Most
of these guidelines are widely accepted
object-oriented practices; others per-
tain mainly to assembly language. Here
are the major ones I'm using;

e Try to use dynamic allocation for ob-
jects wherever possible. In the best ob-
ject-oriented programs, instances of an
object appear and disappear through-
out the program. Rarely will a single
instance exist throughout the execu-
tion of a program. Because an object’s
methods always reference fields of an
object indirectly, there is little benetfit
to statically allocated objects. Convert-
ing a statically allocated object to a
dynamically allocated one later on is
messy. Get it right the first time!

e Avoid accessing the individual vari-
ables (fields) within an object. Write
methods that store values into these
fields and retrieve values from them.
This information-hiding technique is
well proven in OOP and isn't particu-
larly worthy of further discussion.

e Overload as many methods as pos-
sible. CREATE is probably the only

Example 15: Code to allocate

a rectangle
[Ted) C¥; =lre rect
call alioec
Moy word ptr MyBectPtro, ba
mow word ptr MyBeckPtr+d, es

Example 16: Filling in the
pointer to the rect. DRAW routine

oy ax, affsec rectDRAW
M this DRAW, ax

oy ax, seg rectDRAW
mao this DRAW+E, ax

Example 17: Code for example
using the rect and circle types

mey cx, =iza oircle

call CraateCircle

Moy word ptr CircVarPtir, bx

Moy word ptr CircVarPtr+ld, es
s

masy o¥, 5ize rect

call Createfect

maw word pbr RectVarPrr., bx

M word ptr RectVarPtr+2, es

D, Dobb's Journal, March 1990
236

method you shouldn't overload. Ac-
cess methods, which provide access
to the fields of the outermost class,
might be another candidate for direct
access. But the loss of generality for a
small increase in efficiency is rarely
worth it

e Always use macros to call methods,
especially those you're not calling indi-
rectly. This provides a consistent call-
ing mechanism for methods and lets
vou easily overload methods you
choose to implement inline or without
overloading. This applies equally well
to accessing fields in an object.

e As a bare minimum, each class should
have the following methods: CREATE,
DISPOSE, COPY, and a set of access
methods for each of the fields. COPY
should copy the contents of one in-
stance variable's fields to another vari-
able.

Naturally, these are just guidelines,
not rules etched in stone. But 4 certain
amount of discipline early in a project
helps prevent considerable kludging
later on.

An Example

The example in Listing One (page 110)
is a program that adds, subtracts, and
compares signed binary integers, un-
signed binary integers, and BCD val-
ues. While not a complete example (it’s
missing several important methods such
as CREATE, PRINT, DISPOSE, and so
on) it demonstrates the flavor of object-
oriented programming in assembly lan-

guage.
What About Your Programs?

Object-oriented programming is a con-
cept that can reduce the time you spend
developing certain classes of programs.
The OOP concept applies equally well
to assembly language and high-level
language programs. The only draw-
back is that you don't have a large
library of classes to build upon. Of
course, these same problems exist for
Object Pascal and C++ users. Time will
solve this problem for those languages
as users begin developing reusable mod-
ules for both, which is all that is pre-
venting object-oriented assembly lan-
guage from taking off. Perhaps some-
day you will be able to buy off-the-
shelf object-oriented assembly language
libraries; until then, you'll have to write
your own. Even so, the tricks and tech-
niques of object-oriented programming
are well worth considering for your
next assembly language project.

DI

(Listing begins on page 110.)

Viote for your favorite feature/article.
Circle Reader Service No.B.

b

EXAMINING ROOM

ver two years ago, the cover

of the July 1987 issue of Dr.

Dobb's carried the title 380

Development Tools Within

Your Lifetime™ a photograph
of a skeleton that rotted away in front
of its computer while waiting for de-
cent 386 tools, which summed up ev-
eryone’s feelings about programming
for the Intel 80386 microprocessor.

Things have improved a great deal
since that issue, Watcom C7.0/386, for
instance, produces 32-bit code (such
as MOV EAX, 12345678h, and MOV
FS:[EAX], ESD while staying keyword
and library compatible with the de tacto
1G-bit industry standard, Microsoft C
3.1 (MSC51). Even weird low-level rou-
tines such as intdosxt), _dos_setvectt),
_dos_keep(). and _chain_intr¢)do the
right thing in 32-bit protected mode.
Of course, Watcom C7.0/380 (WAT-

380) has many of the same features as
Watcom's 16-bit C compiler (see “Ex-
amining Room,” DY September 1989).
This includes Watcom'’s famous register-
based parameter passing. Many of Wat-
com’s innovations involve the reduction,
and sometimes elimination, of function
call overhead. Any block of code that
takes input from registers and puts out-
put into registers is effectively a tunc-
tional object, and WAT386 takes advan-
tage of this fact in several places, includ-
ing the nifty #spragma aux feature.

Andrew is a software engineer in Cam-
bridpe, Mass., working on CD-ROM net-
work applications, and is also a con-
tributing editor for DD]. He can be
redched at 32 Andrew St., Cambridge,
MA 02139,

74

Inside

Watcom C 7.0/386

32-bit code can speed up your programs
on an already quick machine

Andrew Schulman

Buying In

WATABO produces very different code
from either Microsoft C or Turbo C
(neither of which has an option to gen-
erate 380 instructions, much less 32-bit
code). Yet, this compiler will fit seam-
lessly into your current work habits.
Unlike MetaWare's High C 386 com-
piler, using WAT380 does not produce
“culture shock.”

still, all is not rosy, It will cost you
over $1000 in software to get into 386
development. WAT3806, like High C,
costs $895, and you will also need a
32-bit DOS extender, like the industry-
standard Phar Lap 386 toolkit, which
Costs 5495.

Further, the new Watcom C7.0/386
compiler is just that — new. While writ-
ing this review, I found a number of
bugs in the compiler and its standard
library. Watcom was undoubtedly un-
der pressure from its major client, No-
vell, to get the 386 compiler out the
door. By the time vou read this review,
though. a second, more stable, release
of WAT3B6 should be available.

Primarily because of its newness,
WAT380 in some ways is not as good
a product as MetaWare's High C 386,
which has been around for two and a
half years. Still, there is value in WAT386.
For many PC programmers, this will
be a much easier product to use than
MetaWare's High C. WAT386's Micro-
soft compatibility is very important. On
the other hand, the next release (1.0)
of High C 386, in addition to many
other changes, is scheduled to have
what a MetaWare press release calls
“80% compatibility with Microsoft’'s C
libraries.”

32 Bits!

WAT380 generates code for 32-bit pro-
tected mode. Thus, sizeoffint) and
sizeoflunsigned) are each 4 bytes, not
2 bytes. Likewise, sizeoffvoid *) is 4
bytes. Note that sizeoffvoid near *) is
also 4 bytes,

The all-important ANSI C identifier
size_t, which is the unsigned type of
the result of the sizeoff) operator and
the type used by function parameters
that accept the size of an object, is also
4 bytes (Wypedef unsigned size_1).

C standard library functions such as
malloc(), fwrite(), and strncpy() all
take size_t parameters, and sirlen() re-
turns a size_i. These standard library
functions deal in quantities between 0
and UINT_MAX. In the 16-bit code gen-
crated by PC compilers like MSC51,
UINT_MAX is OxFFFF (65,535), vield-
ing the familiar 64K limit on PC array
lengths, string lengths. malloc blocks,
and so on,

But in 32-bit code, UINT_MAX is
OxFFFFFFFF, or 4,294,967,295 — the
magical upper “limit” of 4 gigabytes!
[n the native mode of the 386, this is
the upper bound set on array lengths,
string lengths, and malloc blocks. Effec-
tively, no limit at all.

The Environment

If fwrited) can write 4 gigabvtes at a
time (which might be handy if you're
working with CD-ROM or some other
form of mass optical storage), how can
it possibly work with M5-DOS? DOS is
a 16-bit operating system. (So is O5/2.)
The DOS Writetunction (INT 21, func-
tion 401D, which furite() must even-
tually call, expects the number of bytes

Dr. Dobb's Journal, March 1990
237

ers
r

Whdlesale

Check our values!
LIST 1-2

BASIC

Turbo Basic 100 67 64

QuickBASIC 99 67 64

Basic Dev. Sys. 7.0 495 329 321
C LANGUAGE - COMPILERS

Lattice C-6.0 250 156 143

Microsoft C 5.1 450 287 283
| Microsoft Quick C 99 67 64

Turbo C by Borland 150 98 o4
| DATABASE MANAGEMENT

Clarion £95 393 379

Paradox 3.0 725 489 479
IDEASE

Clipper Summer '87 695 429 419

dBASE IV 195 489 479
| FoxBASE + 2.1 395 209 199
DBASE TOOLS

Clear+ for dBASE 200 149 139

dBRIEF w/BRIEF 285 Save Save

dSalvage 100 83 79

R&R Relational Reportwriter 149 99 93
EDITORS

BRIEF 199 Save Save

Epsilon 185 139 109
FORTRAN

MS FORTRAM 450 299 289
OBJECT-ORIENTED

Smalltalk/V 100 59 54

Zortech C++ 199 Call Call
OTHER PRODUCTS

Carbon Copy Plus 185 115 104

HEADROOM by Helix 130 8 79

MNorton Utilities Advanced 150 89 87

PC Tools Deluxe 129 B85 79

Remote2 185 104 99
SPREADSHEETS

1-2-3 495 293 289

Excel 495 339 329
TEXT SCREENS ADDONS

C Worthy w/Forms 295 Save Save

Greenleal DataWindows 395 249 239

Vermont Views 3895 319 299
| WORD PROCESSING

Sorint 200 134 129

WordPerlecl 495 239 234

Prices subject to change without notice. "DD390W"

Whdlesaler -
800-228-3736

South Shore Park
CANADA P.O. Box 534
800-344-2495 Accord, MA 02018

FAX 617-740-1892 Hours: M-F 8:30-5

CIRCLE NO. 199 ON READER SERVICE CARD
76
238

EXAMINING

R OO M

(continued from page 74)

to write in the 16-bit CX register. The
maximum is 64K, How can WAT3806, or
any 32-bit C compiler for DOS, pro-
duce code that's compatible with 16-
bit DOS?

The answer is that 380 C compilers
(for DOS) produce code to be run un-
der a 32-bit DOS extender. Programs
such as Phar Lap's 380 | DOS-Extender
and Eclipse Computer Solutions™ O8/
386 do not replace DOS. Instead, they
(almost invisibly) manage the interface
between 16-bit real-mode DOS and your
32-bit protected-mode program.

In the example of fierited), the 32-bit
code produced by WAT386 or High C
(which MetaWare actually calls “High
C for MS-DOS/386™) continues to call
INT 21, function 40H. But now, the
number of bytes to write goes into the
full 32-bit ECX register rather than the
16-bit CX register.

A DOS extender takes over INT 21
(as well as other software interrupts
like INT 10, INT 16, and so on), han-
dles some functions itself, and passes
others on to DOS. A program running
under a 32-bit DOS extender is effec-
tively running under “MS-DOS/3806,7
because, for example, a call to write
640K is really going to write 640K, The
DOS extender will invisibly break this

up into multiple calls to the “real”™ INT

21, function 40H.

Another interesting example is mal-
foct). 1f your 380 computer came with
4 gigabytes of memory, you could grab
it all with a single call to malloct). As
in 16-bit real-mode C compilers, the C

memory manager eventually calls INT

21, function <48 (allocate memory).
Here, however, the DOS extender pro-
vides a complete replacement, not a
front end, for the DOS routine. There
is one difference between Phar Lap
and Eclipse: 386 | DOS-Extender expects
in EBX the number of 4K pages to
allocate, where OS5/386 more closely
mimics DOS, expecting the number of
16-byte paragraphs. The WAT380 stan-
dard library detects which DOS exten-
der it is running under and allocates
memory appropriately.

By default, WAT380 produces code
to be run under Phar Lap Software's
380 1 DOS-Extender. The Phar Lap toolkit
(DOS extender, linker, assembler, and
debugger) must be purchased sepa-
rately, however,

Oddly, you don't need a 386 machine
or a4 DOS extender to run the WAT380
compiler. By the time vou read this
review, Watcom should be shipping a
32-bit protected-mode version of the
compiler. In the version [reviewed,
however, all compiler components were
16-bit real-mode programs. To avoid

“Not enough memory to fully optimize
procedure” warnings, 1 had to specity
that the compiler use a large-model
version of the code generator. Prety
crazy for a 386 development system!

Presumably, if yvour customers had
38065 but you didn't (which is probably
the exact opposite of the real situation),
yvou could use these 16-bit tools to gen-
erale 380 code on your AT,

Programs compiled with WAT3806 and
linked with Phar Lap’s 380 | LINK will
only run on 386-based machines. To
sell such programs, and to acquire a
program that will “bind™ the DOS ex-
tender into the executable so that vour
customers don't need o know any-
thing about the DOS extender, you must
acquire a redistribution package from
Phar Lap. This costs an extra 51000 for
unlimited distribution.

So the entrance fee tor 380 develop-
ment is still pretty steep. What do you
get in return? A lot: Code that runs
several times faster than 16-bit code;
the elimination of 64K limits on array
sizes or function parameters; and the
elimination of the 640K boundary, al-
lowing yvou (o use all physical memory
in the machine.

Note that this “MS-DOS/ 3867 gives
vou big memory, but not virtual mem-
ory (VM). This is an important differ-
ence from OS58/2. However, a VM man-
ager (3861 VMM) is available for $295
from Phar Lap, and WAT386 code, like
High C code, runs without change un-
der 3861 VMM,

WAT386 code runs under one other
environment: Novell's new 32-bit net-
work operating system, NetWare 380
(see the accompanying box).

The Code

How can a 32-bit C compiler such as
WAT380 produce code that runs sev-
eral times faster than 16-bit code run
on the same machine? Consider the
following two lines of code:

extern char*Env;
char *p=Env

Compiling under the “large model
(which is what most commercial PC
software uses), any 16-bit C compiler,
including Watcom's non-386 compiler,
produce code something like that shown
in the first portion of Example 1, in
which the 4-byte far pointers are trans-
ferred piecemeal from one location to
another.

Because mov mem, regtakes 2 clock
cycles on a 380 and mov reg, mem takes
4 cycles regardless of whether the com-
piler uses the 8-bit (AL), 16-bit (AX),
or 32-bit (EAX) form of the register, this
takes (2*2) + (3*4) = 16 cycles. In con-

(continued on page 79)

Dr. Dobb’s fournal, March 1990

EXAMINING ROOM

(continued from page 76)
trast, the 32-bit equivalent takes 2 + 4
= 0 cycles (shown in the second por-
tion of Example 1).

The 32-bit code is similar to the code
that would be generated by a 16-bit com-
piler working with 2-byte near pointers:

mov ax, Env
mov word ptr _p, ax

In fact, “flat model” 32-bit code and
“tiny model” 16-bit code are very simi-
lar. The only difference is that the 16-
bit code can handle quantities up to

Lap’s 3861 DOS-Extender and, with
some difficulty, for Eclipse’s OS/386,

works with Novell's new network op-
erating system, NetWare 3806. In fact,
Watcom C7.0/386 is being repackaged
by Novell as its C Network Compiler/
380. (This is the subject of Novell's
strange “See Dick and Jane™ ads.)

system, and this allows for several

280-based NetWare. Instead of the
current limit of 100 users per file server,

model” (used in 286-based NetWare),

put figures.

Journal, July 1989).

applications — programs that run in

server” thus becomes a generic server),

called by other NLMs,

[n addition to producing code for Phar

the 32-bit Watcom C compiler also

NetWare 380 is a 32-bit operating

performance leaps over the existing

which is dictated by the single 64K
data segment available in “medium

the new NetWare 386 allows 250 si-
multaneous users per file server. Like-
wise, Novell claims that network
throughput is two to three times
greater than its already zippy through-

In NetWare 380, the lack of seg-
mentation in “flat model” is taken to
its logical (but scary) extreme — no
memory protection. Novell baldly
states that, “There is no memory or
other application-level protection: All
applications and device drivers run
in kernel mode"” (NetWare Technical

When used with NetWare 3806, the
Watcom C compiler produces server

file-server memory (the so-called “file

These server applications are called
“NetWare Loadable Modules,” or
NLMs, and are somewhat like value-
added processes (VAPs) in pre-386
NetWare; except unlike VAPs, NLMs
can be loaded or unloaded at any
time, without taking down the file
server. NLMs, in fact, are dynamic-
link libraries and, in addition to pro-
viding services to clients on the net-
work, can provide functions to be

For instance, when calling a C stan-
dard library such as open() from an
NLM, you are actually calling a rou-
tine in CLIB.NLM, which is the C stan-

dard library provided as a dynamic-

Watcom and Novell

link library. The code for open() is
not linked into your executable.

To produce such an NLM, use the
NLMLINK provided by Novell rather
than the Phar Lap linker. Similar to
the OS/2 linker, NLMLINK requires a
.DEF file with import statements. The
module produced by the Novell linker
essentially contains unresolved exter-
nals that are resolved when the NLM
is loaded into file server memory
(either by invoking the LOAD com-
mand at the file server console, or by
spawning one NLM from within an-
other),

The library included with C Net-
work Compiler/386includes many func-
tions not available in the standard
Watcom library. Naturally, functions
are provided to support network com-
munications with Novell's IPX and
SPX. The Btrieve data management
library is provided as BTRIEVE.NLM.
The Novell library includes functions
(for example, TestAndSetBit() and
BitScan()) to interface to the 386-bit
test instructions.

Network servers are inherently mul-
titasking (multiple operations must be
in progress simultaneously on behalf
of multiple clients), so the library con-
tains functions for “execution threads,”
such as BeginThread(), EnterCritSec(),
ExitCritSec(), SuspendThread(), and
so on. There are also functions to
manage semaphores and queues.

While this part of the Novell API
seems modeled on OS§/2, it is impor-
tant to note that NetWare 380 uses
non-preemptive multitasking. Inside
a “big job,” it is therefore necessary
to call a routine such as delay() or
ThreadSwitch() so that other threads
are not starved.

The library that Watcom provided
for Novell contains a few modifica-
tions to support multiple threads.
Global variables such as errno are in
fact allocated on a prethread basis.
Static data such as used by the notori-
ous strtok() function is also handled
differently than in a single-threaded
library. No new keywords (such as
private, used in Lattice C 6.0 for OS/2)
have been added, however., — A.S.

D, Dobb's Journal, March 1990

9
239

EXAMINING ROUM

64K, whereas the 32-bit code can han-
dle quantities up to 4 gigabytes.

Right now, WAT3806 supports flat
model and small model. In the flat mem-
ory model, the application’s code and
data must total less than 4 gigabytes in
size. In the small memory model, your
code and data are each “limited” to 4
gigabytes. By default, WAT3806 uses the
flat model. When linking with the Lahey
linker (LINK-EM/32) provided with O5/
380, you must compile with the small
model.

Because an offset into a segment is
4 bytes while the segment registers are
still 2 bytes, sizeoff void far *) is 6 bytes
(an FWORD, not a DWORD). But be-
cause a nedar pointer is a 4-byte quan-
tity, you almost never have to deal with
Jar pointers. When a segment takes a
4-byte offset, even the most sloppily
written, bloated program in the world
should do fine with the flat model.
Once loaded, DS and CS stay constant.
Effectively, this is a linear address space.

Real-World Benchmarks

Interpreters are better for benchmark-
ing compilers than the tiny programs
that are usually used. Such benchmarks
usually involve a fair amount of source
code. The C source code for several
interpreters is readily available, and to
execute one line in the interpreted lan-
guage, the interpreter needs to crunch
through a lot of C code,

In the remainder of this review, I'll
describe using WAT386 (and MetaWare
High C) to port a larger program to the
380: ISETL (Interactive Set Language),
written in C by Gary Levin (Dept. of
Mathematics and Computer Science,
Clarkson University, Potsdam, N.Y.).
ISETL is an interpreter for working with
sets, tuples, propositions, several dif-
ferent types of functional objects, ma-
trices, and other constructs useful for
studying the mathematical foundations
of computer science. It is described in
the book Learning Discrete Mathemdl-
ics with ISETI by Nancy Baxier, Ed Du-
binsky, and Gary Levin (New York: Sprin-
ger-Verlag, 1989), ISETL deserves a full

le-bit code:
mov e3, seg Env
mov ax, word ptr es: Env
mov dx, word ptr es: Env+Z
mov word ptr p, ax
mov word ptr p+2, dx

32-bit code:

mov eax, Env
mov P, eax

Example 1: 32- and 16-bit code gen-
erated under the large memory model

80
240

discussion, but for now I'll just describe
the process of producing ISETL/386.
Due to space considerations, the
ISETL/380 listings are not included in
this issue. They are available through
DD (see the end of this article for
information). The ISETL implementa-
tion consists of 29 .C files and 14 .H files,
and totals about 13,000 lines of code.
Some of the code is YACC output.

To sell such programs,
and to acquire a
program that will
“bind” the DOS
extender into the
exectitable so that your
customers don't need 1o
know anything about
the DOS extender, you
must acquire a

redistribution package
from Phar Lap

When 1 tried to produce a 3806 ver-
sion of this real program, my opinion
about WAT386 vs. High C nearly re-
versed. As long as I was working on
small one- or two-module programs,
WAT380's similarity to Microsoft C and
Turbo C made it preferable to Meta-
Ware High C. But once | started work-
ing on ISETL/380, with more source
code, written by someone else, my al-
legiance shifted to High C.

High C provides better warning mes-
sages than WAT386; the High C com-
piler is faster than WAT380 (remember,
the WAT380 compiler [used was a
16-bit real-mode program); surprisingly,
High C seems to produce better overall
code than WAT3860; and, most impor-
tant, High C and its standard library
isn't buggy like WAT380.

I should mention that Watcom has
terrific technical support. If you call
up with a problem, you get to talk to
the person responsible for the library
or the compiler. Watcom is quick to
find and fix bugs and, with the WPATCH

utility that comes with WAT386, they
have made the patch a fine art. Wat-
com runs a well-organized BBS. On
the other hand, I don’t even know how
good MetaWare's technical support is,
because 1 never needed to use it.

At one time or another, we've all
thought we've found a compiler bug
only to discover that in fact we have a
bug in our own code. But after work-
ing with WAT3806 for about a month, I
found that nearly every time it was a
compiler or library bug.

First of all, one of the key switch
statements in ISETL was behaving bi-
zarrely. The value of the variable being
switched on was correct, we would
jump to the correct case label, but a
function call to Emit(42) wasn't work-
ing., The problem is that anv constant
(for example, 42), used (anywhere) in-
side a switch statement is scrambled if
that constant happens to match the
number of case labels in the switch
statement! This bug should be fixed
by the time you read this. If you have
this same release of the compiler, you
can download a patch from the Wat-
com BBS.

Another problem occurs because the
ISETL initialization file opens the DOS
device CON (to implement a pause()
routine for use in ISETL programs) and
tries to read from this device. The prob-
lem is, when reading from any of the
DOS device files (CON, AUX, and so
on), the WAT3806 library gets confused
between binary and text mode; a call
to wait for one character actually waits
for 512 characters, that makes it secem
like the machine is hung.

[In another project, 1 found that irni-
dosx(...) was not working, even
though ini386x(0Ox21, . . . Jworkedfine.
[f this has not been corrected by the
time you read this, a patch is available
from the Watcom BBS,

[n that same project, I found an ob-
scure bug in Watcom's use of the “in-
terrupt” kevword that had to do with
calling an interrupt function rather than
generating an interrupt. Basically, func-
tions detined with void interrupt (far))
work. But functions defined with void
(interrupt far *() (note the placement
of parentheses) don't do a PUSHFD
when you call them.

There is one problem that’s not Wat-
com’s fault: Debugging with the 380
flat memory model is hardly better than
debugging in real mode. With one sin-
gle segment working as a linear ad-
dress space, it is nowhere as easy to
catch bugs as when vou have lots of
little segments (for example, a 2806-
based protected-mode DOS extender
such as DOS/16M). In fact, to debug
ISETL/3806, I found it necessary to cre-

Dir. Dobb's fournal, March 1990

EXAMINING ROOM

(continued from page 80)

ate a DOS/16M version (ISETL/286).
This shows that segmentation is not
such a bad idea, after all, it's crucial for
genuine memory protection. The ideal
situation is to use lots of segments for
development, and then switch over to
the Hat model for production.

The only assistance you get in catch-
ing memory protection violations from
the WAT386 flat memory is the Phar
Lap linker's OFFSET switch, which al-
lows you to load code or data starting
at some offset other than zero. This
way, you get page faults when derefer-

encing bad pointers, though you often
won't know where they come from.

Benchmarking with ISETL/386
Once ISETL/386 was up and running
with WAT380, 1 was able to write some
ISETL programs and use them for bench-
marking the compilers. In addition to
contrasting WAT386 and High C, I was
able once again to compare 32-bit code
with 16-bit code, using the Turbo C-
produced executable from the ISETL
distribution.

Figure 1 shows the results tor two
different ISETL programs (0 generale

WAT386 HIGH C 386 TURBOC

PRIME.SET 2000 18.0 16.3 24.8
PRIME.SET 4000 42.6 40.0 N/A
PRIME.TUP 2000 1:03.7 52.7 1:11.3
PRIME.TUP 4000 4:14.9 3:27.6 N/A
FIB.SET 1000 15.0 14.1 20.4
FIB.SET 1200 18.0 17.0 N/A
overall test 1:05.3 59.4 1:30
total 477.5 407.1 N/A
ISETL filesize 133K 148K 209K
ISETL full compile 12:52 min. 11:45 min. 3:30 min.

Figure 1: ISETL test execution times in seconds (Watcom and High C run
times using Phar Lap 386 | DOS-Extender)

prime numbers, for an ISETL program
to generate the first 1000 Fibonacci num-
bers, and for an overall test of ISETL
operauons.

Rather than use explicit loops, the
ISETL prime number program in List-
ing One (page 115) uses set notation.
This program creates the set of all odd
numbers less than n, takes the union
of this set with the singleton set (2],
then takes the difference between the
resulting set and the set of all odd com-
posite numbers less than . The result-
ing set is the set of all primes <= n.
This can be expressed in a few lines
of ISETL code.

Listing Two (page 115) performs the
same operation, but uses ordered tu-
ples (sets are, of course, unordered). 1
had 1o choose a small number n be-
cause, even with garbage collection,
ISETL gobbles up a lot of memory.

Listing Three (page 115) is a pro-
gram to generate the first 1000 Fibon-
acci numbers. This relies on ISETL's
support for assignment to the return
value of a function (which allows one
to write functions that “remember’ past
values-dynamic programming) and
ISETL's arbitrary-precision arithmetic.
Fibonacci(1000) is a 209-digit number.
ISETL/386 takes 15 seconds to com-
pute the first 1000 Fibonacci numbers

82

Dr. Dobb's Journal, March 1990
241

in the WAT380 version and 14 seconds
in the High C version. The 16-bit Turbo
C ISETL takes 20.4 seconds.

The High C 380 version of ISETL was
faster than the WAT386 version in ev-
ery case tested. Overall, the High C
version was about 15 percent faster
than the WAT386 version. This is some-

Programs such as
Phar Lap’s 386 | DOS-
Extender and
Eclipse Computer
Solutions’s 0O5/386 do
not replace DOS. They
manage the interface
between 16-bit real-
mode DOS and your
32-bit protected-mode
program

what surprising since, as is well known,
MetaWare produces High C by using
an automatic compiler-compiler (which
MetaWare markets separately as the
Translator Writing System),

Profiling with the DOS/16M protected-
mode debugger from Rational Systems
(DOS/16M currently has the only de-
cent protected mode C source-level de-
bugging tools available), I found that
ISETL generally spends 50 percent of
its time in only four routines. Perhaps
this test is somewhat lopsided. Any
real program, on the other hand, will
have similar “hot spots.”

The Future

Over the next few months, both Wat-
com and MetaWare are planning major
upgrades that may be out by the time
you read this. One obvious change in
High C is that while the 1.5 libraries are
missing functions such as open(),
Sdopen(), dup(), filenof), and signal(),
High C 1.6 is scheduled to include both
a Microsoft-compatible standard library
(including _dos_keep(), intSGx()),a 32-
bit version of the GFX graphics library,
and a 32-bit version of the Sterling Cas-
tle C library.

Dr. Dobb's Journal, March 1990
242

WAT380's new release should include
a 32-bit protected mode source-level
debugger, a 32-bit version of Watcom's
graphics library (which is identical to
the MSC51 graphics library), a 32-bit
version of the WAT386 compiler, and
a 32-bit version of Watcom’s Express
in-memory quick compiler. The source-
level debugger is urgently needed, and
should put Watcom ahead in the 386
development tool race.

A 386 compiler war may indeed be
starting. While WAT 386 itself is not fully
mature, its arrival is a sign of the grow-
ing strength of the market for 386 de-
velopment tools. And about time too,
now that the first 486s are rolling off
the assembly line. But remember, even
an 80586 will not save you from bad
code,

Product Information

Watcom C7.0/386

Watcom

415 Phillip Street

Waterloo, Ontario, Canada N2L 3X2
800-265-4555

Price: $895

Requirements: 386-based PC- or PS/2
compatible, MS-DOS 3.1 or higher,
386 DOS extender toolkit: 386 | DOS-
Extender (Phar Lap) or OS/386
(Eclipse Computer Solutions)

C Network Compiler/386
Novell Development Products
P.O. Box 9802

Austin, Texas 78766
512-346-8380

Price: $995

Availability

All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif. residents add sales
tax) to Dr. Dobb's Journal, 501 Galves-
ton Dr., Redwood City, CA 940063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specity the issue number and
format (MS-DOS, Macintosh, Kaypro).
source code is also available online
through the DDJ Forum on Compu-
serve (type GO DDJ). The DDYJ Listing
service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
l-stop bit. Press SPACEBAR when the
system answers, type: listings (lower-
case) at the log-in prompt.

DIJ
(Listings begin on page 115.)

Vote tor yvour tavorite feature/article.
Circle Reader Service No. 7.

83

PROGRAMMER'S WORKBENCH

s applications get larger, fewer

and fewer are written in a sin-

gle language. Large software

projects tend to come together

in a piecemeal fashion — some
parts are borrowed from previous pro-
jects, other parts may be purchased
from various vendor sources, and, let’s
face it, every programmer has a favor-
ite language, Assembly languages have
made great strides recently in the area
of mixed language programming. Now
more than ever before, it makes sense
to write applications with more than
one language and to include assembly
language in the mix.

Furthermore, every programming lan-
guage ever created has inherent
strengths and weaknesses. One are:
in which different languages have dis-
tinct strengths is in how procedures are
called. This is an extremely important
issue, because in many applications
more time and effort is spent getting
in and out of procedures than doing
anything else! Conversely, a good choice
of procedure calling conventions can
actually make the difference between
an application that can be written
quickly and one which cannot be writ-
ten at all.

LIsually, higher-level languages such

Karl is the principal developer of Turbo
Assembler and be can be reached
at P.O. Box 39, Bedford, MA 01730.
Rick is director of language develop-
ment for Borland Interndational and
can be reached at 1800 Green Hills
Road, Scotts Valley, €A 950065,

B4

Karl Wright and Rick Schell

as C and Pascal use an argument pass-
ing technique known as the “stack frame
method,” where arguments are pushed
onto a stack and addressed as an offset
from some “frame” pointer. It is a good
general technique in that it allows for
an unlimited number of arguments with
built-in recursion.

C and Pascal each make use of a
slightly different flavor of the stack frame
method. The C-style stack frame per-
mits a variable number of arguments
to be passed to a procedure. This re-
quires that the caller remove the argu-
ments from the stack after the proce-
dure call, because it is the caller who
knows best how many arguments were
passed. In Pascal, on the other hand,
the number of arguments is fixed, so
the procedure itself is responsible for
removing its arguments from the stack.
Typically, this is done efticiently with
the single machine instruction RET xx.

Until recently, assembly language was
generally limited to what is known as
the “register passing method™ of pass-
ing arguments. With register passing,
arguments are passed to procedures
in machine registers or at tixed mem-
ory locations. (Stack frames could be
constructed in assembly language, but
with considerable effort on the part of
the programmer.) Register passing is
not a generil argument passing method,
There are a limited number of registers
in any machine, and explicit PUSH and
POP instructions must be used to re-
tain the availability of arguments dur-
ing recursion. Nevertheless, register pass-
ing is a much more efficient method

| Mixed-Language
Programming with ASM

Getting the job done often requires
blending models and languages

of passing arguments than the stack
frame when the number of arguments
to a procedure is small and the particu-
lar argument registers are chosen care-
fully in light of the instructions, which
are 0 be done inside the procedure,

A Text "Spectrum Analyzer” Example
The example used o illustrate this point
is 4 program that reads one or more text
files, breaks them into words, and counts
the individual words. It then sorts the
resulting array by word count, and dis-
plays the word and the associated count
together in a neat, tabular form.

This example emphasizes speed of
execution, with the additional criteria
that modularity is preserved and nasty
tricks like self-modifying code are not
used. This will permit the program to
be relatively easy to change or to up-
grade, and still be considerably laster
than anything written wholly in a sin-
gle language.

The major points that need to be
covered are the interfaces between mod-
ules and what each module is respon-
sible for, as well as the overall organi-
zation of the application.

The command line that this program
will accept has the following format:
SPECTRUM <file_spec> <file_spec> . . .
where each <file_spec> can include wild
cards. If a file name is given more than
once, its spectrum will be taken more
than once. The output of the applica-
tion will be a table that is written to
Standard Out and is sorted in order of
reference count, the most referenced
words being listed first.

Dr. Dobb's Journal, March 1990
243

PROGRAMMER'S WORKBENCH

(continued from page 84)

The basic steps are: 1. Initialize all
data structures. 2. Parse the command
line. For each file spec, read the file(s)
and break it (them) into words, Keep a
reference count for each unique word.
3. Build a list of unique words and sort
it by reference count. 4. Scan the sorted
list and print out the reference count and
associated word for each list element.

For the sake of performance, the work
of reading a file, breaking it into words,
and hashing them into a symbaol table
15 best handled in assembly language,
as is the other time bottleneck that
occurs when the sort is done. Less time-
critical areas, such as command-line
parsing and table formatting, are writ-
ten in C to provide greater flexibility
in the user interface. Finally, the gener-
ality of assembly language, another in-
herent strength, makes it best for deal-
ing with the heap and error handling
modules.

The major modules we need and
their respective languages are: ER-
ROR.ASM, the assembly language error
handler (see Listing One, page 1106
HEAP.ASM, the assembly language mem-

ory allocator (Listing Two, page 1106);
WORD.ASM., the assembly language
lexer/word, table/file input (Listing
Three, page 110); SORT.ASM, the as-
sembly language general-sort proce-
dure (Listing Four, page 119): and SPEC-
TRUM.C, the command-line parsing, text
formatting, and output written in C (List-
ing Five, page 120). The make file is
shown in Listing Six, page 121,

Throughout the program, we've made
every effort to use an appropriate call-
ing convention for the situation. On
procedures with stack frames, Pascal-
style calling conventions are most fre-
quently used because of their inher-
ently faster execution and smaller code
requirements. Only on procedures that
require a variable number of arguments
do we use a C-style stack frame,

The extensive modularity we use in
this application is not absolutely neces-
sary given its small size. We have tried,
however, to put forth as general a treat-
ment as possible, demonstrating tech-
niques that are appropriate even for
very large applications. The use of
strong data abstraction is one of these
techniques. In strong data abstraction,

the details of an actual data structure
are known only to a small set of proce-
dures that manage that data structure.
The data structure and the procedures
that manage it are taken together to
form a module. Any other code in the
program that deals with the data struc-
ture must do so through the appropriate
procedures — any other access is con-
sidered to be a breach of modularity,
In this application, the HEAP and
WORD modules are good examples of
strong data abstractions.

The program uses SMALL model with
a NEAR stack. All of the code is in
segment _TEXT (except for any code
in the C libraries), so CS is always set
to _TEXT. Data, uninitialized data, and
stacks dare all in DGROUP, so 88 must
always be set to DGROLUP, DS is also
set to DGROUP in the C sections of the
program, but is used as a general seg-
ment register in the assembly language
code,

The interfaces to the procedures in
the various modules pretty well spell
out the function of each module:

Error Handling Module Because

- errors need only to be caught and dis-

The assembly language section of the
application was written in Borland's
Turbo Assembler 2.0 and uses several
features unique to that assembiler. If
you are using another assembler, you
may need to modify portions of the
example so that your assembler will
accept it. The following are the fea-
tures | used and how you can work
around them in your assembler,
Extended CALL automatically builds
a calling stack frame by generating a
series of PUSHes in the order appropri-
ate to the specified language. For ex-
ample, CALL foo pascal,ax, bx, wordptr
would PUSH the three arguments AX,
BX, and WORDPTR onto the stack in
the order appropriate for Pascal stack
frames, and is equivalent to

PUSH ax
PUSH bx
PUSH wordptr
CALL foo

Multiple PUSHes/POPs permit more
than one item at a time to be PUSHed
or POPed with a single instruction,
For example,

PUSH AX BX
POP BX AX

Assembler Specific Features

is equivalent to

P1ISH AX
PUSH BX
POP BX
POP AX

Local Symbeols are enabled with the
LOCALS directive. All local symbols
begin with the two characters @@.
They are scoped to be local to the
enclosing procedure. For example

fool proc

imp @@exit
@@exit: ret
endp

foo2 proc

jmp @@exit
@@exit: ret :This @@EXIT can co-
exist amicably with the former one.
endp

If you are using an assembler that
does not support this feature, one
way to work around it is to change
the MODEL statement at the start of
each module to MODEL SMALL, PAS-
CAL. This will cause all symbols within
a procedure to become local.

ARG and USES Statements the as-

sembler used for the example has a
way of setting up procedure stack
frames that is somewhat easier to read
than the standard method. For example:

foo proc pascal
arg ai,a2
uses ds,si

is equivalent to the statement:

foo proc pascal uses ds si.al a2

Some assemblers require a language
to be specified in the .MODEL state-
ment before the language keyword
PASCAL is recognized. If this is true
for your assembler, you will need to
change the .MODEL statement at the
start of each module to MODEL
SMALL,PASCAL.

The CODEPTR type is used occasion-
ally in the example. It means either
WORD or DWORD depending on
whether the selected model has NEAR
or FAR code, respectively. Because the
example is SMALL model, you may re-
place CODEPTR with WORD wherever
it is found.

— R.S.

244

Dy, Dobb's Journal, March 199¢)

PROGRAMMER'S WORKBENCH

void pascal ERROR_INIT (void)
Initializes ermror module.

unsigned pascal ERROR_TRAP (void pascal (*execution_procedure)())
Returns 0 if no error occurred in the execution of
EXECUTION_ PROCEDURE or any procedures it calls. (Otherwise,
an error code is returned.) EXECUTION PROCEDURE is a
generic procedure which can generate errors in its execution
(via ERROR_LOG) and might be declared in C as follows:
void pascal execution_procedure(void)

void pascal ERROR_LOG (unsigned error_code)
Causes control to pass to the nearest enclosing ERROR_TRAP.
Execution resumes with that instance of function ERROR_TRAP
returning error_code.

Table 1: Required procedures for error bandling

void pascal HEAP_INIT {unsigned starting_segment, unsigned segment_count)
Initializes the heap to start at a certain segment and be
a certain size.

void far * pascal HEAP_ALLOC (unsigned paragraph_count)
Allocates the requested number of paragraphs from the
heap and returns the far address of the memory in DX:AX,
NOTE: The offset part of the address is always 0.

Table 2: Required procedures for stack heap

void pascal WORD _INIT (unsigned maximum_ward _count)
Initializes symbol table. The maximum number of
different words allowed is passed so that a hash table
can be initialized.

void pascal WORD_READ (unsigned file_handle)
Reads all the text there is from the specified file
handle and analyzes it.

void pascal WORD_SCAN (void pascal ("word_procedure)() |
Calls the specified procedure once for each individual
symbol. The word descriptor for the symbol is passed to
WORD_PROCEDURE as an argument. WORD_PROCEDURE might
be declared in C as follows:
void pascal word _procedure(unsigned word_descriptor).

char far * pascal WORD_NAME (unsigned word _descriptor)
Returns the FAR address of the name of the described symbol.

unsigned pascal WORD_REFCOUNT (unsigned word _descriptor)
Returns the total reference count of the described symbol,

unsigned pascal WORD COUNT (void)
Returns the total number of distinct words processed so far.

int pascal WORD_COMPREF (unsigned word_descriptor1, unsigned
word_descriptor2)
Compares the reference counts of two word descriptors.
Returns flags for refcount(word_descriptor2) -
refcount(word_descriptor1). NOTE: This procedure, while
it obeys Pascal calling conventions, is not callable
directly from C because it returns its result in the flag
register. It also has the requirement that the registers
CX and DX are preserved.

This procedure might be described as using a sort of
“hybrid” calling convention, where a stack frame is

used but high-level language register conventions are not
obeyed.

Table 3: Procedures for symbol table

88

fcontinued from pege 86)

played without the ability to resume
execution of the application, the error
handling scheme this program uses is
a4 mechanism whereby the stack pointer
is saved at some point in the execution
of the program, and if an error is en-
countered, the program is resumed at
that point. The required procedures are
listed in Table 1.

Heap Module Because data struc-
tures are allocated but never freed, a
simple stack heap is the best choice for
both performance and simplicity. The
application uses a paragraph-based
heap where memory is allocated with
16-byte granularity. This turns out to
be useful because it permits any data
item allocated from the heap to be
described with a single 16-bit segment
address. See Table 2.

Symbol Table Module The symbol
table module is responsible for much
of the actual work of reading in a file,
converting it to words, and recording
the word usage information. After it is
read in, cach symbol is represented by
an ared of memory allocated from the
heap containing the reference count
for the symbol and the actual text of
the symbol. Because itis allocated from
the heap, each symbol can be addressed
by using a 16-bit word descriptor. Re-
fer to Table 3.

Sorting Module The sort routine is
written in assembly language because
a4 recursive algorithm was chosen and
recursion tends to be faster if register
passing can be used appropriately. In
this case, there are a4 small number of
registers that are used directly; more
importantly, during the innermost step
of the recursion (which is done most
often) no registers whatsoever need to
be saved on the stack. Recursion with
a stack frame can’t make a decision this
intelligent, because access to the argu-
ments is needed first.

The sort procedure operates on an
array of words, calling a4 generic com-
parison routine whaose address is passed
as an argument. This comparison routing
uses a hybrid calling convention, where
a stack frame is present but registers are
not necessarily consistent with C. The
level of generality this arrangement
achieves is high, but it does require that
the comparison routine be written in as-
sembly language. Sce Table 4.

If raw speed were the only concern,
the SORT_DO procedure might best
be integrated entirely into the symbol
table module, which would permit the
comparison to be performed directly
and would remove the need to call the
comparison routine. But we felt that a
more general treatment was superior
in terms of moditiability — it is rela-

Dr. Dobb’s Journal, March 1990
245

tively straightforward to add a switch
to control the particular sorting method,
for example.

The Command-line Parsing and
Text Formatting Module We are now
ready to lay out the full-scale sequenc-
ing of the program. Given the assem-
bly language intertace listed earlier, the
following steps should be taken by the
C portion of the program:

Assembly language's
flexibility can assist in
everything from
optimization fo the
creation of programs
using more than one
interfacing convention

1. Allocate memory from DOS, call ER-
ROR_INIT, and set up an error trap
using ERROR_TRAP.

2. Call HEAP_INIT and WORD_INIT
appropriately.

3. Parse the command line. For each
file spec, call WORD_READ for all files
matching the file spec (the C code is
responsible for resolving all wild cards
and for opening and closing each file).
4. Request the total number of unique
words using WORD_COUNT, and allo-
cate an array of 16-bit word descriptors
using HEAP_ALLOC that is large enough
o hold them. Call WORD_SCAN appro-
priately to fill up the array with word
descriptors.

5. Sort the array using SORT_DO with
the comparison routine WORD_COMP
REF, which compares the count of
references for two word descriptors.

6. Write the table title,

7. Scan the array to write out the table
entries. Use WORD_REFCOUNT to get
the reference count for each word de-
scriptor, and WORD_NAME to get the
name string for each word descriptor.

Theory of Operation

The SPECTRUM program uses a hash
function and hash table to achieve its
level of performance. Inside the WORD
module, the procedure WORD_READ
reads text into a buffer. This text is
copied to a storage area one word at a
time. During the copy operation, which
uses the LODSB and STOSB instruc-

Dr. Dobb's Journal, March 1990
246

void pascal SORT_DO (unsigned far “sort_array, unsigned sort_count,
int pascal ("compare_procedure)())
Uses the specified compare procedure to order the array.
COMPARE_PROCEDURE is called with two array values, and
returns flags appropriate to a comparison of those
values. Note that compare_procedure cannot be written in
C because the value is returned in the machine flags. In
addition, the segment registers are not guaranteed 1o be
set up in a manner consistent with C when
compare_procedure is called. Compare_procedure itself is
expected to preserve CX and DX, The definition for
compare_procedure might be stated:
int pascal compare_procedure{unsigned valuel, unsigned value2)

Table 4: Procedures for sorting

89

PROGRAMMER'S WORKBENCH

tions, the text is converted to upper-
case and the hash value for the word
is calculated, all on-the-fly,

The hash table is an array of word
descriptors. An element in the hash
table is O if there is not yet an associ-
ated symbol. The hash function is cal-
culated by looking at each character
in the word, rotating the previous hash
value circularly left by five, and XORing
in the character value. The final hash
value is masked off to become an in-

Now more than ever
before, it makes sense
to write applications
with more than one
language and to
include assembly
language in the mix

dex into the hash table,

After the hash index is calculated,
the corresponding hash table entry is
checked. If it is 0, a new symbol is
created, and its reference count is in-
itialized to 1. Otherwise, the text of the
word is compared against the text stored
in the symbol whose word descriptor
is found in the hash table, If it agrees,
the correct symbol has been located,
and its reference count is incremented.
If not, a collision has occurred, and the
next hash value is calculated by adding
11*2 to the current hash index (this
number must be relatively prime to the
size of the hash table). The process
then repeats until the correct hash ta-
ble entry or a 0 is found.

An unusual technique is used to
speed the recognition of the various
different character types during the lex-
ing process. BX is initialized to point
to a translation table, which contains a
bit for each pertinent character type.

An XLAT instruction followed by a TEST

AL xxxis then all that is needed to iden-
tify a character as a4 numeral, delimiter,
lowercase alphabetic, and so on.
Another unusual technique is used
to describe objects in the assembly lan-
guage section of the program. Rather
than use a full 32 hits to describe the
address of a data object, which is some-
what cumbersome, a paragraph address

is used instead. This paragraph address
becomes the “descriptor” for the ob-
ject. Data within the object is addressed
by loading an appropriate segment reg-
ister with the object descriptor and ac-
cessing the data with a constant offset
using that segment register.

After all files have been read in and
parsed, an array of word descriptors is
built using the routine WORD_SCAN.,
This array is then sorted using SORT_DO
with the comparison routine WORD_
COMPREF. SORT_DO is a recursive sort
that requires N*LOG(N) comparisons.
[t operates by dividing the array into
two roughly equal parts, recursively
sorting each part, and then merging the
two parts in place.

Finally, to output the table, the array
is scanned sequentially. For each word
descriptor in the array, WORD_NAME
is used to obtain the actual text of the
word, and WORD_REFCOLUNT 1s used
to obtain the reference count. These
values are displayed using PRINTF.

Conclusion

[t is not only practical but advisable to
mix languages and models in order to
achieve the best results. Modern as-
sembly language is a vital part of this
mix, and will continue to be important
in the future, because space and per-
formance are always important for com-
petitive software, no matter how pow-
erful the hardware becomes. Assembly
language’s flexibility can assist in ev-
erything from optimization to the crea-
tion of programs using more than one
interfacing convention.

Availability

All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif. residents add sales
tax) to Dr. Dobb’s Jouwrnal, 501 Galves-
ton Dr., Redwood City, CA 940063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the DDJ Forum on Compu-
Serve (type GO DDJ). The DDJ Listing
Service (003-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the
system answers, type: listings (lower-
case) at the log-in prompt.

DD]J

(Listings begin on page 116.)

Vote for your favorite feature/article
Circle Reader Service No. 8.

Dr. Dobb's Journal, March 1990
247

ASM

Listing One (Text begins on page 16.)

/* Sample program to copy one far string to another far string,
* converbing lowercase letters to uppercase letters in the process. */

#include <ctype.h>
char Source([] = "AbCAEfGhI jEIMnOpQrithwHxYz0123456TH9!";
char Deat [100];
/* Copies one far atring to another far string, converting all lower
* gase letters to upper case before storing them. */
void CopyUppercase(char far *DestPtr, char far *"ScorcePtr) |
char UpperSourceTemp;
da |
/* Using UpperSourceTemp avoids a second load of the far pointer
SourcePtr as the toupper macro is expanded */
UpperSourceTemp = *SourcePtr++;
*DestPLr++ = toupper (UpperSourceTemp) ;
| while (UpperSourceTemp):
1
main{) |
Copylppercase((char far *)}Dest, (char far *)Source);

] End Listing One
Listing Two

C near-callable subroutine, callable as:

void CopyUppercase(char far *DestPtr, char far *SourcePtr);
Copies one far string to another, converting all lowercase letters
to upper case before storing them, Strings must be zZero-terminated.

O o= we mi me mg

arms BLIUC
dw F s i pushed BP
dw 7 sreturn address
DestPtr dd i jdestination string
SourcePtr dd) ¢source string
parms ends
L]
~model small
- Code
public CopyUppercase
_CopylUppercase proc nEar
push op
mov bp, sp ;set up stack: frame
push a1 rpreserve C's register vars
push di
push ds iwe’ll point DE to source
igegment for the duration of the loop.
les di, [bp+DestPtr] spoint ES:DI to destination
1ds §i, [bp+SourcePtr] spoint D5:51 to source
CopyAndConvertLoop:
lodsb ;get next source byte
mg al,'a" ris it lowercase?
ib Savellpper 1T
cmg al,’z2! sis it lowercase?
}a Savellpper F 00
and al,not 20h JCOonvert to uppeErcase
Savellpper:
stosb istore the byte to the deat
and al,al 1is this the temminating 07
nz CopyhndConvert Loop 71if not, repsat loop
FOp ds jrestore caller's DS
pop di jrestore Cfs register vars
Fop si
op bp ;restore caller's-atack frame
et
_CopyUppercase endp
eng End Listing Two

Listing Three

/* Bample program to copy one near string to another near string,
* converting lower case letters to upper case letters in the process., */

finclude <ctype. h>
char Source|] = "ADCAEfGhIjEIMnOpQrStUvMxYz0123456789!";
char Dest[100];
{* Copies one near string to anothar near string, converting all lower
* pdse letters to upper case before storing them. +/
void CopyUppercasei{char *DestPte, char *SourcePtr] |
char UppersourceTemp;
do |
/* Using UpperSourceTemp allows slightly better optimization
than using *SourcePtr directly */
UppersourceTemp = "SOUrcePLr++;
"DestPitr++ = toupper [UpperSourceTemp) ;
| while (UpperScurceTemp];
]
maini} |
CopyUppercase [Dest, Sourcel;

End Listing Three

Listing Four

¢ € near-callable subroutine, callable as:

¥ void CopyUppercase (char *DestPir, char *SourcePrr);

;o Copies one near string te another, converting all lowercase lstbers to
i

uppercase before atoring them. Strings must be zero-terminated.

P rms &t ruc
du ? ipushed BP
du ? jraturn address
DegtPtr dw ? jdestination string
a

FourcePtr dw
parms ends

igource strang

.model small

LIVES

Jcode
public CopyUppercase
_CopyUppercase proc near
push bp
moy hp,sp Fset up stack frams
push &1 ipreserve Cra regiskar VALE
puash di
moY di, [bp+DestPtr] spoint DI to destination
ROV g1, [bp+SourcePir] ipoint 51 to source
mov cx,("a’" shl & +“*z° rprelosd CH with lower end of

lowercase range and CL with

upperend of that rapge

moy bl,not 20h ipreload BL with walue used bto
{ convert Lo uppercase

CopyAndConvert Loop:

lodsw iget next two source bytes

cmp al,ch +is the lst byte lowercase?

b savellppe: o

CmE al,cl 15 the Ist byte lowsrcase:

- cavellpper oo

and al,bl joonvert Ist byte £o uppercass
savellppers

&nd al,al 718 the lst byte the termindting 07

Jz ZavelastAndDone iyes, save it & done

CmE ah,ch iig the Znd hyte lowercase?

3o Savellppersd Hialls

Cmp ah,cl ;15 the £nd byte lowercase?

Ta Savelppers T

and ah, bl poonvert Znd byte to uppercase
Savelpperd:

stosw istore both bytes to the dest

and ah;ak 18 the ind byte the termipating 07

inz CopylnaConvertLoop $1f not, repeat loop

mes ghort Done jif sa, we're dons
SavelastAndDone:

stash :storve the final 0 to the dest
Done:

pop i srestore O's register vars

pop 51

pop ko rrestore caller's stack frame

et
_Copylppercase endp

end End Listing Four

Listing Five

i C near-callable subroutine, callable as:

> void CopyUppercess (char *DeatPir, char *SourcePer)i

i Copies one near steing to another, converting all lowercase letters to
{ upper case before atoring them, SLrings must be zerc-termipated. Uses
joextensive optimization for emhanced performance.

1
r

parms struc
dw 7 rpushed: BP
dw F 4 rrefurn addreess

Sl

Destlrr dw
SourcelPtr dw
parms ands

jdeatination string
JBOUECE String

+oild

T

.model small

Ldata
i Table of mappings to uppercase for all 256 ARSCII characters.
UppercaseConversionTable label byte
ASCI1_VALUE=Q

rept 256
1f [ASCIT VALUOE 1t "a") or {ASCII VALOE gb "=z")

db ASCII VALUE inan=lowercase characters map -to themselves

aelbp
db ASCILI VALUE and not 20h ;lowercase chars map to upper equivalents
endi f
ASCII VALUE=ASCII VALUE+l
endm
ycode
public CopyUppercase
_CopylUppercase proc Near
push bp
moy bp:ap fset up stack frame
push gL ipreserve C's register vars
push di
ma dil; [bp+DestPLr] rpoint DI bo destination
moy gL, Ibp+EaurcePrr] jpoint 81 ko source
mow bx,offzet UppercaseConversionTable

jpoint BXE ko lowercase to

; uppercase mapping table
i Thisz loop processes up ta 1o bytes from the source stcing abt a time,
¢ branching only every 16 bytes or after the terminating D is copied.

CopyAndlonvert Loap:
rept 15 ifor ap to 15 bytes in a rowi..
ledsh iget the next source byte

xiat :make sure it's upper case

stosb) jsave 1t to the destination
and alsal ;13 this the terminating 07
1 Done +LE 80, then we’re done
endm

lodah jaet the next source byte

xlat ;make sure it's upper case

stoshk fsave it fo the destination
and al,al tis this the terminating 07
JHE CopyAndConvertLoop i1f not, repeat loop

Done:
pap di irestore C's reglister vars
pop 51
pop bp rrestore caller's stack frame
rek

_LCopyUppercase endp
andg

End Listings

94
248

Dr. Dobb’s Journal, March 1990

Listing One (Text begins on page 46.)

TR I EER AR A s R ERRA R ER RS SR RSN E RS R NSRS RERRRESN R R AR ENERE NS NEEEEREERESEIE.B

i* File: BREAKIBG.ASM

:* BRERK3%6 "main programs”. Contains setup3ff, clear386, breakide and
i* intl 386,

I Williams - June, 1989

;* Compile with: MASM /M1 BREAKJE6;

A EE R Rt R E R s R LR s I R R R R R R R EE R R R E R R R R E R R R R R R R R EE R EE R R R RN]
r

MODEL =mall
Li8eF

public breakiB6, clear3ifé, setupd86, intl 38E
; Set up stack offsets for word size arguments based on the code size

: Be careful, regardless of what Microsoft’s documentation says,
; you must use BCodeSize (not Acodesize, etc.) when compiling with /Ml

IF BCodeSize ; True for models with far code

argl EQU <[BP+G]>

arql EQU <[BP+B]>»

argld EQU <[BR+10]>

argd EGU <[BP+12)>»

ELSE

argl EQU <[BP+d]>

arg2 EQU <[BP+E]>

argl EQl <[RP4H]>

argd EQU <[BP+410]>=

ENDIF

+DRTA

{ Things you may want to change:

DIRECT EQU O # IF 0 use BIOS; IF 1 use direct video access
STEWRD EQU 32 ¢ & of words to dump off the stack

INTSTACE EQG 1 # When 0 don't display interrupt stack words
USE INT1 EQU I { Bet to 0 to disable intl 38&()

aldoffaet dw 0 ; old interrupt 1 wector offset

cldsegment dw 0 r old interrupt 1 wector segment

IF UEE_IHTI

vides dw DBDOOH ¢ segment of video adapter (changed by vinit]
csip db *CODE=",0

done db ‘Program termipnated normally,’, 0

notdone db ‘Program breakpoint:’ O

stkmess d *Stack dump:’,0

vpage de 0

veola db 44

IFE DIRECT

prompt dh *<V>iew ocutput, <T>race toggle, <C>ontinue or <A>bort? ',0
BAVEULEOT dw 0 ; inactive video cursor

ALIGN ¢

vhuff dd 1000 dup [(07200720H)|

ELSE

CUrsor dw 0

color db 7

EMDIF

ENDIF

,CODE

: This is the start up code, The old interrupt one vector is saved in
: oldsegment, oldoffset. intl 386 does not chain to the old vector, it
¢ SlAply replaces Lt.

_setupift proc
push bp
mov bp, sp
push €5
mov ax, 350LH ; get old intl vector
int 21lh
mow 4ax,8s
mov: oldsegment, ax
mov aldoffser, bx
pop 5
mov ax,arg: ; get pew interrupt handler address
push ds
mov dx, argi
; If intl 386 is being assembled, setup386 will check to see if you are
; installlng int1386. If so, it will call vinit to set up video parameters
; that intl 386 reguires.
[F USE_INTL
cmp ax;seg intl 386
jnz potus
cmp dx,offset intl 3E6
Nz notus
push dx
push ax
call winit i Int"l wvideo if it is our handler
pop ds
pop dx
ENDIF
notus; mnov ax 2301H i Store interrupt address in wector table
int 21H
pop ds
I0OT BAX,=AK
moy dr7,eax
mov dra,eax
pop bp
ret
_setuplBb endp

Clear DRT/DRE [just in case)

-

{ This routine setsiclears breakpoints
Inputs:
breakpoint 1 (1-4|
breakpoint type (see BREAK3IHE. INC)
seqment /offzet of break address {or null to clear breakpoint)

386 DEBUGGING

kg

-
-
-
El
-
s

; Dutputs:

; A¥=0 IE suvecessful
i Ad==1 If not successfuol

_break3EE proc
push bp

mow
O

cmp

bp, sp
bx,argl
bx,1

b sutrange

comp
ina
outrange:
e
Pap
rat
nethigh:

bx, 4
nethigh

ax, 0EEEER
bp

movex eax,word pkr argd

shl

eax, 4

movix edx,word ptr arg3

add

eax, edx

iz resetbp

dec

bx

jz bpl

dec

o

jz. bpl

dec

b

jz bpZ

mov
imp
bpl: mov
1mp
bpl: mow
Jmp
bpZ: mow
brcont:

dr3, eax
short brocont
dril, eax
short breoont
drl,eax
short breont
dré, gax

movIX eax,word ptr args

mo

cx, argl

push cx

dec
ahl
add
shl
mov
shl
ek
pop
shl
dec
mMcN

shl

(4
i P 4
cK, LG
eax,cl
edx, 0fh
edx, cl
edx

CE

cx,l

CX
ebx,l
ebx,cl

or eax,ebx

Mo
and

ek, deT
eba, edx

of ebx,eax
i Adijust enable bit {#et on for data bp's, off Lf no data bp's)

adjge:
i ey
and

aay, 200H
ebx, OfEFEEAEEH

test abx, $3EII0000H
jz nodatabp
ar ebx, 512

nodatabp:
M v
pop
xOr
rat

dr T, ebx
bp
AX,ax

breakpoint # (1-4)

: error: breakpoint # out of range

mE W WE B

get breakpoint address
caloculate linsar address
if address = 0 than

turn breakpoint off!
set correct address register

get type
calculate proper position

rotate type

calculate type mask

calculate position of epnable bit

; enable bp

get old DRY
mésk ouk old type
set new Evpe/enable bits

reset GE bit
test for data bp's

t Here we reset a breakpoint by turning off its enable bit & setting type to D
t Clearing the type 18 required so that disabling all data breakpoints will

{ zlear the

resethp:
maw
mov
dec
shl
add
ghl
not
moy
shl
deo
moy
ghl
nok
Mo
and
and

E kit also.

ox, bx
edx, 0fh
faf

ox, 2
cx, 16
edx,cl
edy

cx, bx
cxil

cX
eax,l
eax,cl
ax
ebx,dr?
ebx, eax
ebx,edx

mp adjge

3
mhreakEEE BN

dp

; caleculate type/len bit positions

i Reset the debug register, dissbling all

i interrupt

_cleardBé pr
push
PYp
and
puah
popt
oL
mow

push
maow
ma
Mo
int
Pop

1l vector
o

4

ax

ax, OFEFFH
aX

eax,ed%
dr7,eax
drll;ean
drl,eax
drd,eax
ded,ean
dre,eax
ax, 250180

as
b, oldsegment
dx, oldoffzet
da, by

21H
s

calculate enable bit position

flip bits

clear enable
ciear type

breakpoint. Alse restore the old

turn off trace flag

turn off all other breakpoints

restore old int 1 vector

(continued on page 98)

96

Dr. Dobb’s Journal, March 1990

249

Listing One (Listing continued, text begins on page 46.)

ret
_tlear3dt endp

IF USE INT1

: This is all code relating to the opticnal INT 1 handler

¢ This macro is used to get a register value off the stack and display it
; R is the register name and n is the position of the register on the stack

Fol.e.: putreg “AXT, 10
ouLreq macEQ LN

mov 3ax,&F

mov dx, [ebp+én SHL 1]
call regout

endm

i This is the inteccupt 1 handler
_intl 386 proc far
SLCL
pusha
push ds
push es
push 53
puah Bdata
pop ds
mov bp, sp
IFE DIRECT
call savevideo
ENDIF
now ax,; video
noy &5, ax
agssume cs:fcode,ds:Bdata
mav bx; offset notdone
call outstr
mow eds, dré
call hexout
xor edx, edx
mov dré, edx
call erlf
jdo register dump
outreg "AX' 10
putreg 'FL' ;13
outreg "BX' 7
outreg 'CX',9

outreg *DX',8
call erlf

outreg "5I'. 4
putreg "DI" 3
outreg "5P' ;b
putreg "BPF',5
call crlf

putreg "CSs', 12
putreg "IP', L1

outregq 'DS',2
outreg "E8',1
outreg "55',0
call crlf
i do stack dump
IF STEWED

mav bx,offset sthmess
call oubstr
push fs
mov dx, [ebp]
mov f3, dx
mov al,* [’
call ouch
moy a&l,* *
call ouch
call hexout
mow EL
call auch
mov al,* *
call auch
mov bx, [ebp+12]
IFE INTSTACK
add bx, &
ENDIF
mov dx, bx
push bx
=all haxout
mov al,* i
call oush
call crlf
pop bx
mow X, STEWED
sloop:

mov dx, F5:[bx]
push bx

push cx

call hexout
pop Cx

pop bx
inc bx

inc bx
loop sloop
pop s
ENDIF
nostack:

; Enable interrupts (ses text)
i Save all Registers

{ Reload DS
i point ebp to top of stack

; get video addressabilty

¢ Display breakpoint message

i Print stack dump title

{ get program's s3

; get stack pointer (before pusha)

¢ 5kip interrupt info if desired

+ gt word at stack

7odisplay it

i Here we will dump 16 bytes starting 8 bytes prior to the instruction

{ that caused the break
push £s
call erlf
mov bx, offset caip
call outatr
mnov cx, 8
mov ax, |[ebp+24|
mov f3,8%
moy bz, [ebp+dd)

i get cs

i get Lp

J86 DEBUGGING

cmp bx, 8

jnb ipbegin

mov cx, bx
ipbeging zub bx,cx

push bx

push cx

mov dx, ax

call hexout

may al,t:’

rall ouch

mov al,' !

call ouch

mov dx, bx

all hexout

may al, ="

rall ouch

Pop cx

pop bx

or bx,bx

iz ipskip
iploop:

mav dl, fs: [ba)

push bx

push <x

call hexlout

pop cx

pop bx

inc bx

loop iploop
ipskip:

push bx

mov al,**’

call ‘cuch

mev al," !

call ouch

Pop bx

¢ make sure we have B bytes before
¢ the begining of the segment

t 1€ mot, only dump from the stact
¢ of the segment

¢ display address

r Lif starting at 0, don't display any
¢ betore 1P
i gert byte

7 ooatpot it

P pat "* before IF location

¢ This is basically a repeat of the above loop except 1t dumps the B bytes

i starting at IP
mov cx, B
xiploop:
mov dl, 1s: [bx]
Push bx
push cx
call hexliout
Pop CX
pop bx
ine bx
loop xiploop
call grlf
call orlf

pop fs
IFE DIRECT

i Here we will ask if we should continue or abeort

mow bx,offset prompt

call ocutstr
keyloop:

xor ah,4h

int 1&H

and al,fdfh

cop al,’'T!

jz ttoggle

cop al,'n’

jz ql

cap al,'C*

jz el

cop al, 'V

jnz keyloop

i Get keyboard input

| make upper case

; Display program’'s screen until any key is pressed

call saveviden
=or ah,ah

int leH

call savevideo
jmp keyloop

{ Execution comes here to toggle trace flag and continue

ttoggle:

xor word ptr [bp+ih], 256

i toggle trace flag on stack

i Execution comes here to continue running the target program

el

call erlf
IFE DIRECT

call savevideo
ELZE

XOr a¥,ax

oY CUrfor,ax
EXDIF

pop S35
pop @3
pop ds
popa

¢ Thiz seoms complicated at first.
! You MUST insure that RF is set before continuing. If RF is not set
i you will just cause a breakpoint immediately!

ME WG WG Wy My Ry Ny N Ny

All thiz 3o we can exacute an

sub esp, 6

xchg ax, [esptf]
mov [esp],ax
XOr ax,ax

mov [esptl],ax X
moy ax, [esp+6]
xchg ax, [esp+8]

e W wa

T

In protected mode, this 15 handled automatically. In real mode it
13n"t since RF is in the high 16 bits of the flags register.
Essentially we have to convert the stack from:

16 bit Flags 32 bit flags (top word = 1 to set RF)
16 bit C§ to === > 32 bit C8 igarbage in top 16 bits)
16 bit IF 32 bit IP {top word = 0}

IRETD which will change RF.
make a double stack frame

get ip in ax
store it

eip = (000:ip

get cs

(continued on page 100)

98
250

Dr. Dobb's Journal, March 1990

Listing One Listing continued, text begins on page 46.)

mov [esp+d] ax
XOr ax,ax
mov [esprE] ax

mov ax, [esp+d] { zero that stack word & restore ax

xchg ax, [esp+10] 7 get flags

mov [esp+B],ax

mov ax, 1 ! sar AF

xchg ax, [esp+10]

iretd ¢ DOUBLE IBET (32 bits!})
ENDIF
¢ Execution resumes here t¢ abort the target program
gl:
IFE DIRECT

call savevideo
ENDIF

call quit
_intl 386 endp

IFE DIRECT
{ Bave video screen & restore ours (oaly with BICOS please!)
i {assumes 25 lines/page)
gavevideo proc nesr
pusha
push es
mav ah,0fh
int 10h : reread video page/size in case
mav vpage, bh program changed it
mov wools, ah

L]

push savcursor
mov ah, 3 : get old cursocr
mow bh, vpage
int I0H
MmOV SaAVEUrSaT, dx
pop dx
mov ak, 2 ; set neW curscr
int 10H
MOVER &%, Vpage
mev ol,venls
¥orE ch,ch
mov dx,cx ; veols v 25 + 2
ghl cx,3
ghi de,1
add cx,dx
mov de, Ccx
shl cx,2
add cuw, dx
push cx
mul Cx
mov di;ax ; start at beginning of page
Pop Cx
shr cx;2 i # of double words to transfer
mov ax, video
mov e3,ax
mov 8i,pffaet vbuff ; store inactive screen in vbuff
xloop: mov eax,ed:[di] ! SWap screens
xchy eax, [31]
movw es:[di];eax
add si, 4
add di,4
loop xloop
pop es
popa
ret
savevideo endp
ERWDIF

; compute # bytes/page

: This routine prints a register value complete with label
i The ragister name is in AX and the value is in dx (see the outreg macro)
LBgoUt Pproc near

push d=

push ax

mav al,ah

call ouch

POp ax

call ouch

mov al," ="

call ouch

pop dx

call hexout

ret
regout endp

; Plain vanilla hexadecimal digit output routine
hexdout proc near

and dl,0fh

add d1,*0¢

emp dl, 3ah

ib ddigit

add dl,*A"-3ah
ddigit:

mov al,dl

call ouch

Eet
hexdout endp

¢ Plain wvanilla hexadecimal word gutput routine
hexouk proc near

push dx

ghr dx,12

call hexdout

pop dx

push dx

shr dx,.8

call hexdout

pop dx

386 DEBUGGING

¢ Call with this entry peint to cutput just a byte
hexlout:
push dx
shr dx, 4
call hexdout
pep dx
call hexdout
mov al,’ !
call cuch
rat
hexout endp

: These routines are for direct video ocutput, Using them allows you to
s debug video bios calls, but prevents you from single stepping IF DIRECT
joutput a character in al assumes ds=dat es=videso destroys bx,ah
ocuch PIoc nNesar

mov by, cursor

mov ah, color

mov es: [bx],.ax

ine bx

inc bx

mow SUurssr, bx

ret
ouch endp

if<EF} <LF> cutput. assumes ds=dat es=video destroys ax,cx,dx,di clears
d
crlf PIoc near
MY ax,cursar
mov Cx, 160
®xor dx,dx
div cx
inc ax
mul ¢x
MOV CUTrS0r, ax
mav o, B0
mav ah, color
mov. al,® *
mov di, cucsor
cld
Lep Stosw
ret
cElf endp

ELSE
i These are the BIOS output routines
7 Cutput 8 character
ouch PECC DEAr
mey ah, Deh
mov bh, vpage
int 10h
ret
cuch endp

§ <CR» <LEF> output,

celE PEGC REAT
mov al, Ddh
call ouch
mov al,0ah
call ouch
ret

crlf endp

ENDIF

; Intialize the video routines
vinit Proc Near
mow ah,0fh
int 1dh
mow vwcols, ah
nov wpage, bh
cmp al,’?
mov ax, Ob0D0H
2 vexit
mov ax; Ops00H
yexit: mow video, ax
ret
vinitc endp

¢ monachrome

i oDUtputs sString polnted to by dsibx (ds must be dat) es= video when DIRECT=1

OULSEL prdf neac
cutagn;
mevy al, [bx]
or al,al
18 Gutout
puzh bx
call guch
pop bx
inc bx

imp outagn
outout: ret

outstr endp

! This routine s callsd to return ta DOS
quit PESE RGAT
call clearlidé

mov ax, dcOlh i Raturn ko DOS

int 21h
quit endp
ERDIF
end End Listing One

(continued on page 100)

100

Dr. Dobb's fournal, March 1990
251

Listing Two (Text begins on page 46.)

R E R E R E E R R R R E R A E R R R R R R R R R R R R A R R R R R R R RN AR R R R R R R RO R S E R R E R R R AR R AN RN RS

L

i* File: BREAKIEG.INC ¥
i* Header file to include with assembly language programs using BREAK3IEE *
¥ Williams - June, 1989 s
il &

L]
N Er e R R ERE SR e s E R RS EE AR B R R e R R R R R R R R R R S R RN |

IF ECodefize . If large style models

extrn breakdB6:far, clear3Bé:far, setupdBé:far, intl 38b6:far
ELSE

extrn breaklB6:near, clear3Bé:near, setupdBb:near, intl 386:far

ENDIF

i Breakpoint equates

BP CODE EGo 0 CODE BREAFPOINT

EP:BATAHI EQU 1 : ONE BYTE DATA WRITE BREAKPOINT
BF DATARW1 EQU 3 ; ONE BYTE DATR R/W BREAKPCINT

BF DATAWZ EQU 5 : TWO BYTE DATA WRITE BREAKPOINT
BF DATARWZ EQU 7 : TWO BYTE DATA R/W BREAKPOINT

BF DATAW4 EQU 113 ¢ FOUR BYTE DATA WRITE BREAKPOINT
BP _DATARW4 EQU 15 : FOUR BYTE DATA R/W BRERKPOINT

! Macros to turn tracing on and off
: Wote: When tracing, you will actually "see® traceoff before it turns
1 tracing off

MmacIo

push bp
pushf

mov bp, ap
xchg ax, [bp]
or ax, 1008
xchg ax, [bpl
popt

pop bp

endm

traceon

traceoff macro
push bp
pushf
mov bp, §p
zchg ax, [bpl
and ax, 0FEFFH
xchg ax, [bp]
popt
Pop bp
endm

End Listing Two
Listing Three

;*Ifiﬁﬁiifrfriiﬁi*ilifliii*it*iilEliﬁﬁﬁ*ﬁtttfitﬁHﬂﬁ**t#*ttfiiii!itf*t*ﬁl#t?*‘

* File: BREAKIHG.H
* Header for C programs using BREAK386 or CBRE3IEG
* Williams — June, 1989

*

AR R S R R R R R R R R R R R R R R R R S A R R SR R R R R R RS SRR RS R R RN T R]

T, @ o®m W@

#ifndef NO _EXT_ KEYS
#define CDECL cdecl
telze
tdefine CDECL
bendif

tifndef BR386 HEADER
tdefine BRIBG_HEADER

{* declare functions */

void _CDECL setuplB6(veid (_CDECL interzupt far *i({l):
void _CDECL csetupdB6(void {_CDECL far *}(}}:

void CDECL cleardBé(void):

int CDECL breaklB6é{int,int, woid far *);

vold _CDECL far interrupt intl 386():

/* breakpoint types */
tdefine BF CODE
fdefine BP DATAW]
tdefine BP DATARWL
fdefine BP DATAWZ
tdefine BP DATARWZ
fdefine BP DATAWY
fdefine BP DATARWA

/% CODE BREAKPOINT®/

/* OME BYTE DATA WRITE BREAKPOINT*/
/% OME BYTE DATA RSN BREAKPOINT®/

/% TWC BYTE DATA WRITE BREAKPOINT

/* TWO BYTE DATA R/W BREAKPOINT®/

/% FOUR BYTE DATA WRITE BREAKPOINT*/
/% FOUR BYTE DATA R/W BREAKPOINT*/

LI Lad = LR Ll e

T

bendif

End Listing Three

Listing Four

;f".‘.‘l.lliilil.‘ﬁi-iiiiiiiiiﬁijiiiiiib*ililii*i*ib*ii*ﬁ**k*****i{*ﬁ**'*fﬁ
i* File; DEBUGIHG,ASM -
i* Example assembly language program for use with BREAREIBG -
;* Williams - June, 1989 &
i* Compile with: MASM /M1 DEBUG3IBG.ASM; %

:Ii'il‘iiili.*i*iiii#***f**tiF*H##t*ttiiiﬁl**fiitﬂHﬂ#txtﬂ#ﬂﬂﬂﬂ*ﬂ##iriﬂﬂk‘kit

model large

L3886

INCLUDE breakife.inc
«atack CallH

data
align 2
memcell dw O

¢ make sure this i3z word aligned
¢ cell to write to

386 DEBUGGING

voode
main Froc
rEetup data segrent
mow ax, Bdata
mow ds, ax
assyme cs:fcode,ds:fdata

; start debugging

push seq intl 386 ; segment of lnterrupt handler
push offset intl 386 i offset of interrupt handler

call setuplde

add =g, 4 i balance stack {like a call to C)

i 8et up a starting breakpoint
push seq bpl
push offset bpl
push HP CODE
push 1
call break38g
add ap, 8 i balance the stack

segqment of breakpoint
offset of breakpoint
breakpoinkt type
breakpoint. # {1-4])

e Wa ma ma

push seq bpl i set up breakpoint 2
push offser bp2

push BP CODE

push 2

call break38e

add sp, 8

push seg bpl i set up breakpoint #3
push offset bp3

push BP CODE

pus’ 7

rall breakiBE

add 55,5

push gdata 7 =et up breakpoint #4 [(daka)
push offset memcell
push BP_DATAWI

push 4
call breakidé
add ‘sp, B
bpl:
mov CcX, 20 poloop 20 times
loopl:
mov dl, el ; print some letters
add 41,8
mov ab, 2
bpl:
int Z1hb
bp3:
loop logpl i repeat
mov bx,of fset memcell ; point bx at memory cell
mov ax, [bx] ;j read cell (no breakpolnt]
mov [bx],.&h ; this should cause breakpoint 4
cell clearif i shut off debugging
mcv ah; 4ch
int 21h ; back to DOS
main endp
end main

End Listing Four

Listing Five

fﬁ**i**##i#i*ii*ﬁi*iiiiiii*#*iiiiiiiiiii*fiiiiiiiiiiiirtfitiiiiiiill#ﬁitiiﬂl

-

* File: DBGIBE.C
* Example T program using BREAEIBE with the built in intecrupt hapdlec
* Al ¥Williams -- 15 July 198%

% Cﬁmpilu with: CL DBG386.C BREAKIBE

.
-
L]
L]
L
-
L]

LR S E L R RS L EREESE RS AR RRERERELERLERSEEESESEERRERERRERERNEEEEEEEERERESREEEEEERE] #
#binclude <stdio.h>
#include <dos.h>
f#include "break386.h"
int hece[10});
void far *bpj
ink i;
maxni)
[
int 3
setupdBE(intl 386); /* aet up debugging */
bp={void far *)&here(l]; /* make long pointer to data word */f
break3B6(1,BP DATAWZ, bp); /* set breakpeint */
for (3=0:3<2:3++) | /* loop twice */
for (i=0;i<10;i++) /* for each element in here[] */
L
char ¥;
putchar(i+"Q"); /* print index digit *f
herai]=1; J* aszign 4 to array element */
;
break386&(1, 0, NULL) ; /* turn off breakpoint on Znd pass */
|
cleardfei); /* turn off debugging */
|
End Listing Five

(continued on page 104)

102
252

Dr. Dobb's Journal, March 1990

Listing Six (7ext begins on page 46.)

;‘i**iﬂI****i*l'ffftiiiii*f**ii.'.lllillllililiiiiff.frtt-t.jt|‘l-..p...i***p
i* File: DBGOFF.ASM .
N] 8
¢* Try this program if you leave a program abnormally (say, with a stack -
i* overflow}, It will reset the debug register. ’
:* Williams - June, 1989 *
#* Compile with: MASM DBGOFF; *

L]

R R R e e R R R R AR R R

.model small
LJBGP

etack 32
Loode

main proc
XOT £AX, BAX
mov drl,esx
mov ah, dch
int 21H
main endp
end main

:elaar del

: oexit to DO

End Listing Six

Listing Seven

s EARAANAAR AN ER R AN AR R R R AN AR AR AR RS AR R AR R TR

;* File: CBRE3I86.AZM "
% Functions to allow breakpoint handlers to be written in C. "
* Williams - June, 1989 ”
;* Compile with: MASM /M1 CBREI86.ASM; "
;iiiii!1l!litlfii#itilil#l-ittiliii+++iliiii1i1tiiifiniiiiiritiiiﬁniiiiili*nii
MODEL zmall

. J86F

public ecsetupiié

; Set up stack ocffsets for word size apguments based on the code aize
; B2 careful, regardless of what Microscoft's documentation says,
{ you must use @CodeSize (not fcodesize, etc.)

IF @CodeSize { True for models with far code
argl EQU <[BP+&]>
argl EQU <[BP+B]>
argi EQD <[BP+10]>
aragd EQU <[BP+12]>
ELSE

argl EQU <[BP+4)>
args EQU <[BP+6]>
argl EQl) <[BP+B]>
argd EQU <[BP+10]>
ERDIF

LATA

7 You may need to change the next line teo expand che stack your breakpoint
i handler rupms with

STACKSIZE EQU 2048

oldoffset dw [: old interrupt 1 vector offset
oldsegment dw [i 0ld interrupt 1 vector segment
oldstack equ this dword

s5p_save dw 0

55_save dw 0

ds save dw 0

es_save dw 0

ooall equ this dword ;T routine's adress iz saved here
c off dw 0

C ARG dw [

uIdstthq dw 0 ; 0ld start of stack

newspe equ this dword ; New stack address for C routine

dw offset stacktop
dw seg newstack

i Here is the new stack. DO NOT MOVE IT OQUT CF DGROUP
i That i3, leave it in the DATA or DATA? segment.

newstack db STRCESIZE DUP (0)
stacktop EQU 5

extrn STEHQQ :word i Microsgit heap/stack bhound
« CODE

; This routine is called in place of setup3B6{). You pass it the address of
@ vold far function that you want invoked on a breakpoint.
It"s operation 1s ldentical to setup3dé{) except for:

1} The interrupt 1 vector Ls set to cintl 386() (see below)
2] The address passed 1is stored in location CCALL
3} DS and ES are stored in ds_save and e35_save

Ea e Ha A s W

_Gaetup3Bh proc
push bp
mav bp, sp
push e3
MoV ax, &s
moV 23 3ave,ax
mov ax,ds
mov ds Bave,ax
mov ax, 3501H
int 21h
MoV &x, o8
mov oldsegment , ax
mov oldoffset, bx

386 DEBUGGING

pop es
maov ax,args
push ds
mov dx, argl
mov C_Seq,ax
mov. c_off,dx
mov ax,gseq cintl 38R
mov ds, ax
mov dx,offset cantl 386
mov ax; 2501H
ink 21H
Fop ds
XOr eax,eax
mov drG, 2ax
pop op
et
~esetup386 endp

LR R R RS R R R R R R R R R N A R R A R R N A R R R R R E E R T EEE R R R R RN

L3
e *
i* Here is the interrupt handler!!! *
i* Two arguments are passed te C, a far peinter to the base of the stack "
i" frame and the complete contents of dré as a long unsigned int. -
o W
i* The stack frame 15 as follows: '
s o L]
i i
:i 4 .
g {Interrupted code’s stack) ;
i FLAGS "
S T h
4 e £ o
;* Ax Ll
¥ Ex L]
. DX ¥
g B ¥
. 5F —— (Stack pointer points to IP above) o
- BF Ll
;% SI '
Ha i34 &
iy ER x
ri DS 3
i 55 % pointer passed to your rcouting points here "
L] a
i* The pointar is two way. That 15, yoo can read the values or set any of .
i* them except 55. You should, however, refrain from changing C3,IP,or SP. *
i ¥
RS AL ER R RS R LN R R R R R s R T AT T S RN

einel 386 proe

pusha i 3ave reglsters

push ez

push dz

push sz

mov ax,8data opolnt at our data segqment
ROV ds, ax

BOV aX, 55

ROV 35 _5aVe, ax ¢ remepber old stack location
mov 5p_Save, sp

cld

lss ap,newsp ; switch stacks

mav ax, STERQO ¢ save old end of stack

mov aldstkhgg, ax

maov ax,offset newstack ¢ 1load new end of stack

mov STEHQO ax

st

mov eax,dré ; put DR6 on stack for C
push eax

push 55 save P put far pointer to stack frape
puth sp save i on onew stack for C

mov ax,es_save i restore esfds from csetupdBG()
MoV £5,ax

mov ax,ds save

ROV G5,.8%

call ceall r call the C program

IOr 23X, eax ;- elear DRE

mov drk, eax
pov ax,fdata

mov ds,ax ; reqain access to data
lss ap,oldstack i restore aold stack
add sp,2 ; don't pop off 55
; {in case user changed it)
pov ax,oldstkhag ¢ reatore end of stack
pov STEHQO, ax
Pop ds
pop €8
popa

This zeens complicated at first.

¥You MUST insure that RF is set before continuing. If RF is not set
you will just cause & breakpoint immediately!

In protected mode, this 18 handled auteomatically. In real mode it
isn°t since RF 1s in the high 16 bita of the flags register.
Esgentially we have to convert the stack from:

18 bit Flags 32 bit flags (top word = 1 to set RF)
16 bir C3 b ——=ck 32 bit C5 {garbage in top 16 bits)
16 bit IF 32 bit 1P {top word =)

R WE I WE WA W WE WE Mg My Ba W

All this so we can execute an IRETD which will change RF.

make a deuble stack frame
get ip in ax
stare it

suli esp, €

xchg ax, [esp+b]
moy [esp],ax
HOI ax,ax

mov [esp+?],ax
mov ax, [esp+i]

e Wy W

e

eip = 0000:ip

xchg ax; [esp+8] Foget cs
mov [esprd], ax
XOL 8X,3x

104

Dr. Dobb's Journal, March 1990
253

mov [espeb] ax

mov ax, [esp+d] { zero that stack word & restore ax
xchg ax; [esp*rll] i get flags
mov |esp+8],ax
mov ax,l ! set BF
xchg ax, [esp+l0]
iretd ; DOYBLE IRET (32 bits!)
_cintl 386 endp
end
End Listing Seven

Listing Eight

LR R R R R e E R LR R L N T T T T T rorwraraura
(X

' File: CBREDEMO.C

* Example C interrupt handler for use with CERE3SE
* Williams - June, 1989

* Compile with: CL CEHKDEMO.C BREAK3ISE CERE3EA

ffff*tﬂ‘1tifififft!.l.lil'l‘rl**i.Ittit.t.j*‘t|jt'|'f‘l*ﬂiii}*i****tifiifiif

tinclude <stdia.h>
tinglude <conio.h>
tinclude <ctype. h>
tinclude <dos . h>
finclude "break3Ea.h™

/% fupctions we will reference *f
int logpl);
void far brokei);

maini)
{
int 1;
i* declare function broke as cur interrupt handler */
csetupdfé(broke) ;
break38é(1,BP CODE, (void far *)loop); /* set break at function loop */

tor (1=0;1<10;1++) loop(i):
printf ("Returned to main.\n"};

clearldBe(): /* turn off debugging */
|

/" This functicn has a breakpoint on its entry */
logpilint j)

{

printf ("Now in loop (%d)\a",3jl:

!

l."*iii"r'*rllili-l-*l AR RS RS E st R R R RN RERE R R RN R R E R S e R N R R R RS F AR RN AL
W

Here is the interrupt handler!!!

Mote it must be a far function (normal int the LARGE, HUGE & MEDIUM
models) . Two arquments are passed: a far pointer to the base of the stack
frame and the complete contents of dré as a long unsigned int.

The stack frame 13 as follows:

{Interrupted code’s stack)
FLAGS

£3
IP <
AX
CH
ox
BX
5P ——— (Srack pointer points to IP above)
BE
&I
pI

[3=
DS
58 <

> OE B O ® B W & OB W OB O E

@ & W & W om

pointer passed to your routine points hece

The pointer is two way. That is, you can read the values or set any of
them except 35. You should, however, refraip from changing C3,IP,or GP.

- s & W @ & W

-
ti*i*t***.*i**iiiiii**iIiiiiii'iil‘!‘iiii‘Iiiiiiiii‘iili‘iﬁ.l.il.i.i‘...llii;

veid far broke{void far *p,long dré)
{
statie int breaking=1; /* doa't do anything if breaking=0 */
int gy
1f (breaking}
I
int nyr
int far *ip;
fttittﬂitltlttiriiiititiiiiititiiiiiliillli.-!iiiiiitiiililiiitliiiii#.lll!l
* Here we will read the local wvariable off the interrupted program’s stack!
* Assuming small modal, the stack abeve cur astack frame locks like this:
" i = wariable szent to loop
add = address to return o main with
<our stack frame starcs here>

L]

L]

L]

* This makes i the 15th word on the stack (16th on models with far code)
L3

L]

L ifiiitﬂktﬂ**titiit*!ti**ifitiit!*tttitiiiiittftfiitittfitiiititittf-itiltl;

tdefine IOFFSET 15 /7" uge 16 for large, medium or huge models */
n=* | {unsigned int far *)p+I0OFFSET):
printf({®"\nBreakpoint reached! (DRé=%1X i=%d)\n" .dré.n):
f* Ask user what to do. */
do. |
printi("<Coontinue, <M>odify i, <A>bort, or <N>o breakpoint® ™):
c=getche(};
puteh{’\r");

puteh{’\n’}; S start & new line */f

1f: [ieg) [function key pressed */
I
getchli);

continue;
I
c=toupper (c) ;
/* Modify loop’s copy of i1 [deesn’t change main's i) */
if |ce='H")
|
int newi;
printf{"Enter new wvalue for i: ");
scanf ("%d", fnewi);
*{iunsigned int far *)p+IOFFSET|=newi;
continue;
|

if [e=="1A") v Exitimg *f
I
clear3Be () ; /v ALMWAYS turn off debugging!!! */
exit (0] ;

J
if {o==tN')

breakipg=0; /* We could have turned off breakpoints instead */
| while {c!="A'g&c!="N"&&c!="C"};

End Listings

Dr. Dobb's Journal March 199¢)
254

105

Listing One (Text begins on page 58.)

/* segments.c */

f#include <stdio.h>»
#include <stdlib.h>
#include <windows.h>
Finclude "segments.h”
binclode "segtable . h®

int szhppNamelength = 8;

char *szhppHame = "Seqments";

char. *szClacks = "Too many clacks or timers!®™;

char *szQutOfMemory = "Not enough memory.";

fdefine MAX VARIABLE PSEGS (MAXPSEGS - MINPSEGS - 1)

typedef struct data |

PEEG psed;

5EG lastseg;
SEG oldseq;
short changed;

1 DATA, FRR * DATAP;

PREG psegdaka;

¥define FARDATAP ({ (DATAP)FARPTR((, *psegdata))
shert xchar:

shert vchar;

BOOL random action = TRUE;

Lnt action_count = {;

HWHD hWindow;

PEEG alleocate (LONG size, char *string);

BOOL reallocate{P3EG pseg, LOMG size, char *string);

NG FAR PASCAL SegmentsWndProc (HWMD, unsigned, WORD, LCNG);

int FAR PASCAL timer_ routine(HWMD hwnd, unsigned message, short id, LONG time);
[FP strcpyifp(lFP stringl, IFP stringZ):

int strlenifp(IFF stringl;

int. FAKR FASCAL timer routine(HWND hwnd, unsigned message, short id, LONG time)
I

/* Bandemly allccatelfree a segment in the Segment Table or

manitor the Segment Table for movement. Update the line in the window

that changes.

L
int B
LONG gize;
char buffec[40];
RECT rect;
int random_switch;
message;
id;
Lime;

if {randem action}
I
if {++action_count < 1D)
reburni0];

action count = Q;
i = rand{) % MAX VARIABLE PSEGS;

slze = (LOMWG) candi); f* 0 <= 3ize <= F2TRT &/
sprintf(buffer; " %d bytes", (shortisize)
random switch = rand{):

if (FABDATAEE[Li].pseg)
I
if (random switch > 2+32767/4)
|
i1f (FARDATAF[i].lasksegq == D] /* if data i3 free */
FARDATAP[i] .changed = =1; /* reset Lhe count */
bulfec{l] = "R";
regllocate [FARDRTAP[i] .pamg, size, buffer);
t
&l se 1f {:andﬂmLFwitch = 1*32T67 /4]
I
SegmentFree (FARDATAF [1] .pseg);
FARDATAP [i].pseg = 0;
|
else if (*FARDATAP[i].psegl
CataFres (FRRDATRF[Qi] .psegl;

else

Euffec[0)] = 'A*;
FABRDATAP (1] .pseg = allocate(size, buifer};
FARDATAP[1].changed = -1;

|

setRecti&rect, %*xchar, (i+2)*ychar, 46*zchar, {(i+3)*ychar);
InvalidateRect (hwad, &rect, TRUE};

]

for {1 = 0; 1 < MAK VARIABLE PSEGS; 1++)
{
it (FARDATAP[i).lastseqg != *FARDATAF[i].pseq)
[
FARDATAF (i) .0ldseq = FARDATAP[i],lastseq;
FARDATAF([i].lastseg = *FARDATAF[1i].pseq;
FARDATRF[i] .changed++;
setRect {&rect, 9*xchar, (i+Z)*ychar, 46*xchar,
InvalidateRect (hwnd, &rect, TRUE);
]

[i+3y*ychac) ;

I
recurn{d) ;
|

void SegmentsPzint (HOC hDC)
[

char buffar [1007];
sheort laen:
int iy

WINDOWS MANAGEMENT

TextOut (hDC, 9*xchar, ychar, "pseg seg oldseg moved™, 23);
for (i = 0: i < MAX VARIABLE_PSEGS; i++)

{
len = sprintf{buffer, "data|%d] %, 4X &%.4X", i, FARDATAP[i].pseq,

*FREDATAP[i] .pseq) ;
Textdut (RDC, xchar, (i+2]*vchar, buffer; len):
if [FREDATAP[i].p=eq]

{
if (*FARDATAP[1].pseq == {)
TextOut (hDC, 3Il*xchar, (i+2)*ychar, "Data Free", 8};
else

|
len = sprintfibuffer, "%.4% %.2X", FARDATAF[i].oldseg,

FARDATAP (1) .changed) ;
TextOut (hDC, Z1*xchar, (i+2)*ychar, buffer, len};
strapyifp (MAKEIFP (buffer, ésegDgroup,
MAKEIFF (0, FARDATAP [i].pseg)!);
len = strlenifp(MAKEIFP (buffer, &seghgroup));
TaxtOut {hDC, 31*xchar, (i+Z)}*ychar, buffer, len};
|
b
&]lza

TextOut (hDC, 31*xchar, (it2)*ychar, "Fresa®, 4);

|
IFF strcpyifp(IFP stringl, IFP stringl)
{

char FRE *strl;
char FAR *stri;

strl = IFPZPTR (stringl};
str2 = IFPZPTRIistringl};

while (1)

[
retrl+t = *str;

if (*stri == Q]
break;
str2++;
§
return (stringl);
|

int strlenifp(IFF string)
{

char FAR *str;

int len;

str = IFF2PTR{string);

for (len = @; strilen] != 0; len++]

ceturnilen);

J

BOOL SegmentsInit (HANDLE hlnstance)
[

WNOCLASS SegmentsClass;
SeamentsClass, hCursor = LoadCursoer (NULL, IEE_BHEGHI;
SegmentsClass.hlcon = LoadIcan{hinstance,

MAKETNTRESCURCE (SEGTABLEICON)) ¢
SecmentsClass. lpszMenuName = "segmentsmenw”;
SegmentsClass. lpsiClassName = sifAppHame;
SegmentsClass.hbrBackground = (MBRUSH)GetStockChject (WHITE BRUSH) ;
ZecmentsClass.hinstance = hlnstance;
gegmentsClags.style = C5_HREDRAW | C5_VREDRAMW;
SegmentsClass. lpinWndProc = SegmentsWndEroc;

if {!RegisterClass([LPWNDCLASS) &iegmentsClass))
return FALIE;

return TRUE;
}

PSEG allocate{LONs size, char *string)

i

Bllgocate 'size’ bytes from the global heap.
*string’ intec the allocated memory.

Copy a null cerminated

i
PSEG psed;
char FAR *farptr;
int if

if {! (pseg = SegmentAlloc (size)))
raturn HOLL:
farptr = FRRPTR (D, *pseg):
for {i = 0; string[i] 6& 1 < (int}oize-1; i++)
farpte[i] = stringfi]l:
farptec[i] = 0;
return pseg:
}

BOOL reallncate(PSEG pseqg, LOMG size, char *string)
[

lII‘I'

Allocate "size’ bytes from the global heap.
‘string" inte the allocated memory.

o &

Copy & null terminated string

char FAR *Farptr;
int is

if (! {ZegmentRealloc{pseq; sizel))

return FRLSE:

farptr = FARPTR(D, =*pseg):

for (1 = 0; sering[i] && i < (inc)size-1; i+4)
farptr[l] = steing[i];

farptrli] = 0;

return TEUE:

(continued on page 108)

106

Dr. Dobb’s Journal, March 1990
255

Listing One (Listing continued, text begins on page 58.)

int PRSCAL WinMain (HAMDLE hlInstance, HAMDLE hPrevInstance, LPESTE lps:zCedline,
int cmdZhow]

(

MG mag;
HWND h¥ed;
ank 17
TEXTMETRIC tm;
HBE hde
FARPROC lpprocTimer;
OATAF datap;
lpszCadLine;

if (thPrevIinstance)
1f [!SegmentsInitihlnstance)]
return FALESE:

SegmentInit{);
if [![pzegdata =
SegmenthllccI[DHDHDIsizenEIDATh|'HARFUAHIAELE_ESEEEIJJ
[
MassageBox (h¥Wnd, szOutOfMemary, szippName, MBE QK| :
ratiarn FALSE:
|

datap = FARPTR(0, *psegdata);
for (L = 0; i < MAX VARIABLE PSEGS; 1++}
I
datap[i] .lastseg = 0;
datap[i] .pseg = O;
|

hde = CreareIC ("DISPLAY®, NULL, KULL, HULL):
GetTextMet Frics (hde, &R

uchar = cm.embveCharWideh;

yohar = tm.tmHeight;

DeleteDs (hdeo)

hWindow = hWnd = CreateWindow(szAppName, sihpplame, WS TILEDWINDOW, 0,4,
de*xchar, l4*ychar, MULL, BULL, hInstance, HKOLL];:

lpprocTimer = MakeProcInstance (Cimer routine, hinstance);
while (!SecTimer (hWnd, 1, 100, lpprocTimer})
{
if [IDCANCEL == MessageBox (hWnd, szClocks, szAppMame,
MB ICONEXCLAMATION | MB RETRYCANCEL))
return FALSE;
}

ShowWindow (h¥nd, ocmdShow) ;
UpdateWindow (hWnd) ;

while (GetMessage{smsg, NULL, 0, 0))
1
TranslateMessage (kmsg) ;
DispatchMessage (eémsg) ;

WINDOWS MANAGEMENT

108
256

return |[inbEimsg.wParam;
I

LONG FAR FRSCAL SegmentsWndProc [HWND hWnd, unsigned message, WORD wParam,
LONG IParam)

|
PAINTSTRUCT ps;

sWitch (message)
I
case WM COMMAND:
switch [wPacam)
{

case MENU START:

random action = TRUE;
break:
case MENU STCP:
random_action = FALSE;
break;
default:
break;
f
break;
case W DESTROY :
KillTimer (hwnd, 11;
PostQuitMessage (0} ;
break:
case WM _PARINT:
BeginPaint {hWnd, &ps);
SegmentsPaint (ps.hde) ;
EndPaint (hWnd, &ps);
break ;
default:
recurn DofWindawProc (hWnd, message, wFaram, lParam);
break;
|
ceturn(OL) ;
!
End Listing One
Listing Two
f* segments.h */
fdefine SEGTABLEICON 1
¥define MENU START 50
¥dafine MENU STOF 51 End Listing Two

Listing Three
¥ segments.mak
cp=cl -d -DDEBUG -c -WZ -DLINT ARGS -AM -Gswc -us =Zdpl
Coobgi
Ficpl S*.c 23*.8rk
Lypa S*.err
segrable.oby; segqtable.c segqrable.h

segments.ob); segments.c segments.h segtable.h

segments.oes; segmenks,d segmenkts, ico segments.h
Lo = Segments.rc

segment s, exe; Segments,ob] segments, tes segments.def segtable.obj
linkd /linenumbers/co segments segtable, falign:16, /map,mlibw/noe, seqments.def

mApSYM Seoments
EC Segments.res

End Listing Three

Listing Four
F* gegments.rs */
#inclode "segments.h®

SEEGTABLEICON ICON segments. ico

segment smeny MENU
BEGIN
MENUITEM "Start!™, MENU START
MENUITEM “Stop!", MENU STOP
END End Listing Four

Listing Five

i gegmencs.def

NAME Segments
DESCRIPTION "Segments’
STUR 'WINSTUR. EXE'

CODE MOVERBLE
DATH MOVERBLE MILTIPLE

HERBEIZE 10000
STACKSIZE 4096

EXPORTS
Seqmant sWndProc @1
timer routine B2

End Listings

Dr. Dobb’s Journal, March 1990

00P IN ASM

tProvide convenient address for Ul,

yOitte for pther variables.,

idseq, esidseq;, s5:55eQ

rProvide 2 mnemonic name for THIS.

:Force £ flag bto zero,

iForce I flag to one.

i 3ane code, why duplicate it?

sForce 2 flag to zero.

;Force 2 flag to one.

;5arme pode, don't duplicate it.

i Les = 8= i ———-1
; War i}
Listing One (Text begins on page 66.) —— 4 e
Mar ul
5 R e k0 UZAdr dd J
P P S R T PR R T e T SVar 5l
¢ OBJECTS.ASM ~-- This program demonstrates chject-oriented programming S1Adr gﬂar if
; techniques in 3086 assembly language. S3hds 3 53
| ’ BCDVAr bl
?se; segment byte public "data BiAde a4t o3
; Unsigned Data Type: BCDVar bi
Ursigned struc %Ehd: dd b2
Value dw Q * : _ .
Get dd % (AY = This H GEHQ:LC Pointer Variables:
“Put” dd ? :This = ax Genericl dd ?
TAdd_ dd ? :AX = AX + This Genericd dd ?
_Sul dd . fRX = WY - This ¢
TEq dd ? :2era flag = AX == This el ends
i < dd ; iZerc flag = BX < This i L
Unsigned ends cEaq segrent byte public *CODE’
¢ UVar lets you (easily) declare an unsigned variable. . ASSUmE csicseq, ds
War macro Var :
VAL Unsigned <,uGet,uPut,ufdd, uSub, uEq, ult> TIhLE 2gu es: [bx]
: Signed Data Tygg?m i Macros to simplify calling the wvarious methods
Signed struc _Get macro i
W Y call _HiE. Gat
dd ¥ sGet method 2ndm
dd ? :But method _Fur macro _
dd ? shdd met hod call This, Put_
dd 7 +Sub method endm
dd 7 :Eq mathod _hdd maC Lo
dd 9 Lt merhed call _Thi.s._P.d-:I_
Signed ends endm
7 SVWar lets you easily declate a signed variable. _Sub macre
SVar MACES Var call _This. Sub
var aigned <,8Get, sPut, s&dd, s5ub, sEg, sLt> endm
endm _Eqg macro
; BCD Data Type: call _This. Eg_
BCD sbruc endm
dw Q Walue _Lt macro
dd ¥ iGet method call _This. Lt
dd ? But method endm
d'j ',|| ;hdd‘ mﬂt.ﬂﬂd I-i.!:tt'lllll.linl:llllnl.lhlll.ll.l.jllJlli.l::!lll.rll.l.l::u.l.larl!.l:.iﬂllljlll.l.j.illlr!lﬂnlll
gg 3 ;E:ﬂ;;gﬁngEthﬂd : Methods for the unsigned data type:
dd 2 ‘Lt method ubet proc far
BCD arids oY ax, _This
: BCDVar lets you {easily| declare a BCD variable. PR I:;
BCDVar macco Var B i ¢
var BCD <,bBet, bPut, bAdd, bSub, bEg, bLt> e e
irichn maw _Thas,ax
;i Declare variables of the appropriate types [(For the sample pgm below): abut rié
i Also declare a set of DWORD walues which point at each of the wvarlables. uBdd St £
i This provides & simple mechanism for obtalning the addresa of an object. i o ;
arid ax, This
ret
uhdd endp
usuk proc far
sub g%; This
ret
usub endp
ukEg DIoc Far
omp ax, This
ret
uEg endp
uLt preoc far
cmg ax; _This
ib ulsLt
Cmp axe 0
ne ultRtn
Crg ax; 1
[P = ret
uI=Lt: Cmp ax, ax
ret
uLt endp
:i****tttt**ﬁitiiﬁtﬁﬁrii.'t*i'iililili'l'\l‘il.i'i'i'i'tti"\l'iiri'i'i'i'i-i-i#iiliiili:ﬂitlil‘*tﬁiiki‘
; Methads for the unsigned data type.
sPut agqu aFut
sGat aqu ulGet
shdd 2qu uhda
s5ub equ usub
sEq 2qu uEg
st prac Ear
om ax, This
il sIsLt
cmg ax; 0
jne sLLRtn
Emp ax;, 1
sLtRtn: et
s1sLt: Cmp ax, ax
ret
SLT endp
:-i‘l‘Hi#H't‘i'Ifttﬂﬂiittttﬂ#iitittﬂﬂt:l"rttHt'l"i"tl"l"rﬂ:'tt#‘l‘ti“l‘ttﬂ#ftrtfitt#ifttfﬂti#ii
Methods for the BCD-data type
biGet B usat
bPuk equ uPut
hEq aqu uEg
DLt equ uLt
bRdd prac far
add ax, _This
daa
ret
badd endp
bSub proc far
sub ax, _Th15
das
ret
bSuk endp
J—*Tf!‘tti’itlIr-i-i-l.-i-lii-bti-t-i-l--i-i--i--i-i-iiiil-lr-i-i-tit-l--p--i-iiil-ti-i-i-l.-iii-l-ii-i--i---iiiii--lriiiiii

110

Dr. Dobb's Journal, March 1990
257

Test code for this program:

TestSample proc near
push ax
push bx
push es

Compute "Genericl = Genericl + Generic2;"

les by, Genericl
_Get
les bx, Geperic?
_Add
les bx, Geparicl
_Put
pop es
pop b
pop ax
ret

TestSample endp

; Main driver program

MainPgm PIOC far
mowr ax, dseq
may dg,; ax

i
i

Initialize the objects:

les bx; UlAdr
mew ax, 39878
_Put
mow word ptr Genericl, bx
nov word ptr Genericl+2, es
ud = 43677, Alsp point Generic? at ud for later use.
les bx, D2Adr
nov ax, 45677
"Eut
mov word ptr Generic?, b=
oo word ptr Generic2+?, es
51 = =5,
les bx, 51Adr
B0 A%, =5
_Put
82 = 12345,
les b, S2hdr
el ax, 12345
_Fuk
¢ bl = 2889,
lesg b, Blhdr
mic ax, 2ZE99h
_Put
b2 = 195,
les by, BIRdr
Mo ax, 19h
Puk

: Call TestSample to add ul & w2,

call TestSample
Call TestSample to add sl & s2.

lag bx, SlAdr

moy word ptr Genericl, bx
mow word ptr Genericl+d, es
les bx, 32Adr

moy word ptr GenericZ, bx
moy word ptr Generici+d, es

call TestSample

i Call TestSample Lo add bl & bi.

; ul = 33B76. Also initialize Genericl to point ac ul for later use.

les bx, BlAdr
mow word ptr Genericl, bx
mow word ptr Genericl+d, es
les bx, B2Adr
mow word ptr Genericd, bx
mow word ptr Generici+d, es
call TestSample
mow ah, dch rTerminate process DOS omd,
int 21h

MainPgm endp

(= -1a ends

58ag seqment byte stack "stack’

stk dw 0fdh dup (7)

endsthk dw i

s8aqg ends
end MainPgm

End Listing

Dr. Dobb’s Journal, March 1990
258

111

EXAMINING

Listing One (Text begins on page 74.)

3 PRIMES, SET
7 ISETL program £o find number of primes <= n, wusing set notation

size = 1000 ;

sgrt size 1= fix{sqrt(sizel} ;

cnmpasites ;= {i%*j v 4 o {3,5..5qrt sizel:] kn (1..9i2e div 1]] ;
primes := [2} + [3,5..35ize] - composites j

peint sizie g

print Fprimes ;

End Listing One

Listing Two

» PRIMES.TUP
§ ISETL program to find number of primes <= n, using ordered tuples

5 tuple difference operator
diff := func(tl, tij:

return (i 1 im 1
end;

i-potin 2] ;

size = 1000 ;

sqrt_size ;= fix(sqrt(size]) ;

conposites := [i*] : L in [3,5..sqrt size], 9§ in [i..size div i]] ¢
primes = [2] + [3,5%. .5ize] ,diff composites |

print size ;

print dprimes ;

End Listing Two

R OO0 M

Listing Three

= FIa,TUF
§ ISETL program to find Fibonacci numbers, using dynamic programming

7 uges logi): only accurate up to 308 digits
digits := [unc{x);
i1f {x = 0} then retoro 1 ¢
alse return 1 + fleoc(loglabsi(xi))
end;
end;

% use "dynamic programming®™ te assign to Eibd)
fib := Funcix);

Fibix} := fibix=1) & Eib(x=2} :
recturn Eibdx)
and;
Eib{} = 1
Eib{1l} 1= 1.
fiboaacsl = [fib(x) « x Iin [1 .. 1000 1 1 &

print Fibomacei (100D)
print digits{fibonacci(l000))

End Listings

Dr. Dobb’s Journal, March 1990

115
259

Listing One (7ext begins on page §4.)

i Module descripiion * This module takez care of error Erapping. The scheme
rused records the trapping coubtine stack pointer so that an error cam cause
;ihe stack to rekurn to a consistent state. This module was writben using
sBorland®s Turbo Assembler 2.0.

PE% Environment **
.model small iSet up for SMALL model,
locals iEnable local symbols.

I®% Macrog v

ri<hbenerate correct return based on model>>
Procret macro

Lf dcodezize

rect
slae

retn
andif
endm

;** Public operations **
poblic pascal ERROR_INIT
public pascal ERROR_TRAP
public pascal ERROR_LOG

;Initialize error handler.
iS58t up error trap.
;Log error.

J*¥* Uninitialized data **
.data?
errstk dw ? 3P at last error log (-1 if nona).

ol s

ccode

saet up D5 Lo mothing since thak iz the typical accangement.
dgsume ds:inothing

i [Initialize ereor managet]
error_init proc pascal

mov errstk, -l

tet

sDeclare proc with PASCAL calling conwventions.

endp

j|5et up ercor trap)

iThis procedure preserves the previous ERR3TK, sets up a new ERRSTK, and
;calls the passed procedure. On gxit, the previpus ERRSTK is restored.
Brror trap proc pascal ;Pascal calling conventicns.

arg Rfproc:codeptr yOnly argument ig procedure to call.

uses ds,gi.es,.di ;force & save of all reglisters C cares oI,
push errsck

;Call incernal coukipe te record return address on stack.

call #dron

pop BErsCk

ret

lLabel proc

mov ecrstk, sp

call d@proc pascal
%OT ax,ax

procret

BErLn
;j5awe 5P 50 We can restore it later.
itall procedure,

jReturn code = O far normal return.

endp

¢ |Log error)
iControl is passed te the last ERROR TRAP, if any.
Brror code is passed and returmed in RX.
Eerror_log proc pascal
arg Hierror_ code:word
cnp errstk,~I
EEl: jz BAL
mov ax,#ferror code
mov Sp.eErstk
procret

sLock up 1f noerror address.

endp
end

End Listing One

Listing Two

i* Module description * This module manages a simple stack-based heap.
;Deallocation is not supported. NOTE: This module must be assembled with /HMX
;to publish symbels in the correct case. This module is written using
;Borland's Turbo Assembler 2.0.

S*+% Enviromment **
model small ySet up for SHALL model.
locals ;Enable local synbols,

;¥4 Eouabes **
err memory = 1| ;Out of memory error number.
;*% Public operations **
public pascal HEAP INIT
public pascal HEAP ALLOC

;Initiatize heap.
tAllocate memory from heap.

;%% External operations **

j<<Error handler>>

extrn pascal ERROR _LOG:proc :Long jump library procedure for errors.
i** Upinicialized data **

.data?
mepptr dw 7
memsiz dw ?

iPointer to first free segment.
iRemaining paragraphs in heap.

|:i‘i ":C-lﬂ-E.' |

code

;5et up DS to nothing zince that is the typical arrangement.,
assume dsinothing

flInikialize the heap) _
heap init proc pascal ;Declare proc with PASCAL calling conventions.
arg HBstart seg:word,ffpars size:word

PROGRAMMER'S WORKBENCH

;Arguments are starting segment and para <count.
mov ax, @istart seg
maw III-E1'.11FI|: Ly2H
mov ax,@fpara size
moy memsiz,ax
ret
heap Anit endp

i [Allocate memory fcom the heap]

heap alloc proc pascal tDeclare proc with PASCAL calling conventions.
arg @FBpara_count:word iOnly argument is count of paragraphs.
;Seg if there i35 enough remaining.

mov ax, @fpara count

Ciip MEmS1z,ax

o fderr

sub mEmS1Z;ax

add ax,memptr

xohg ax, memptzo

mov dx,ax

KOF ax,ax

ret

jOut-of-memory error.

MOV a¥,EIr_mMemory

call error log pascal,ax

rMever returns.

heap allec endp

end End Listing Two

Blere:

Listing Three

i* Module description * This module reads source files and converts them into
iwords, then files the words away in a symbol table with the help of a hash
itunction. This module was written using Borland's Turbo Assembler 2.1.

;** Environment **
.model small iSet up for SMALL model.
locals ;JEnable local symbols,

'Y Equates **

<<Efror numbers>s

grr_hash = 2 iCut of hash space error number,
err read = 3 iRead error.

i<<Hash function>>
hash _rotate = 3 ;Amount to rotate for hash functiom.
hash skip = ll;Number of entries to skip on hash collision.

i4<HRead buffers>
rbf size = §00h ;3ize of read buffer in paragraphs.

** Public operations **
public pascal WORD INIT
public pascal WORD READ
public pascal WORD COUNT
public pascal WORD HAME
public pascal WORD REFCOUNT
public pascal WORD SCAN
public pascal WORD COMPREF

sInitialize hash cable.

fRead file, conwvert Lo words, and hash them.
fet total word count.

Gt name of word.

(et reference count of word.

facan all words.

iCompare word reference counts.

i*® External operations *®

i <<Heap>>

extrn pascal HEAP ALLOC:proc iHeap allocation.
iwsBError handling>>

extrn pascal ERROR_LODG:proc ;Trap an error.
;"' Data structure **

i<<Symbol table entry>>

symtbl struc
symref dw ?
SYmsiz dw ?
ends

sympam = size symtbl

rReference count.
iLength of word.

:Offsec of start of name text.

yxe Initialized data *+

vdata
i<<Translation character type table>>
typdlm = 1 iDelimiter bBit.
typnum = 2 iNumerical digit.
typcas = 20k ;Lower case bit: Set if lower case letter.
xlttbl label byte

db "0 dup (typdim|

db 10 dup (typnum)

db (*A'-1})-'8" dup (typdlm}

dbh "I -{'A'-1) dup (0O}

db ("a'-1}-" I dup (tyopdlm]

dy *z7-{'a'-1} dup (typcas]
db 233-"z' dup {typdlm)

;** Uninitialized data **
.data?

i<£Hazh table values>>

hshptr dw 7 i Segment address of hash table.

hehesiz dw ? ;Total number of hash entries., Must be a power of 2!
hishent dw 7 ;Total free entries remaining ia hash table.

hshmgk dw ? ;Mask for conwerting hash value to address.

i<<Read buffer values>>
cbfptr dw ? ;Segment address of read buffer.

recWord bufferss

wrdbuf db 256 dup (7]
s Code e
. pode

;9=t up D3 to nothing since that i1s the typical arrangement.
assume ds:nothing

(Listing continued on page 118)

slInieialize hash table]

116
260

Dr. Dobb's fournal, March 1990

Listing Three (Listing continued, text begins on page 84.)

word init proc pascal

arg Fﬂna:_yurd_cuunt:wurd
uses as,

d@ll:

rArgument : Maximum number of words.
di

;First, allpcats read buffer.

mav ax, rbf size

call heap alloe paseal,ax

moy rbfptr, dx

sNow convert maximum word count to power of 2.
mov ax,Bémax word_count

mavy el, 16+1

dec ¢l

shl ax,1

jne @11

mov ax,l

shl ax, el

:Initialize some hash parameters.

mov hshaiz,ax

mav hshent,ax

dec ax

shl ax,1

mov hahmsk, ax

sMow, allocate hash table from heap.

mov ax.hshsiz ;Bize of hashk table in words.
add ax,7

mov cl;3

shr ax,cl JConvert Lo paragraphs.
call heap alloc pascal,ax

mov hshptr,dx

iClear out hash table: 0 means '"npo value’ .

mov es,dx

xor di,di

cld

mov cx,hshaiz

XOT ax,ax

Iep 5Losw

et

word init endp

;[Bmad file and assimilate all words)
word read proc pascal

arg WRhandle rword

sArgument i3 File handle.

uses ds, si,es,di

Blread:

Elskip:

fdeclp:

Hamed:

HAmum:

fddone:
Adwend:

Adwnd2 :

:Load XLAT buffer address. The XIAT rable is usted for case convarsion
jand for character type identification.

mov bx,offset xlttbl

;Read npext buffer while delimiter processing.

call Bébrd

joxz fidone

i3kip all delimeters, etc.

lodsb

xlat xlttbl

test al,typdlm

loopnz @Rskip

inz @@read

;Adjust pointer & count.

dec =i

inc cx

;If it is a number, skip to end.

test al, typnum

inz BEnum

;It is a word., We'll transfer a word at a time to the word buffer,
shashing it as we go. DX will be the current hash value. CX is the
;amount remaining in the buffer.

xor o, dx

;Initialize output address,

push s3

pop es

mov di,offset wrdbuf

;jTransfer. This is THE most time-critical loop in the program.

lodsb :Bead character,

mov ah,al

xlat xltthbl

test al,typdim

inz RAwend

and al,typcas

neg al

add al,ah

stosh

;Calculate hash walue,
mav ah,cl

mov cl,hash_rotate
ol dx,cl

mav L, akb

xor dl,al

loop EEclp :Keep going until end of buffer.
tEnd of buffer while word processing. Read more.

call EBbrd

jex: REwnd?

imp @dclp

[Read next buffer while number processing.

call 8@brd

joxz @@done

rHumbers are not considered
15kip up to first delimiter.
lodsb

xlar xltthl

tast al,typdlm

loopz Ed@num

jzr Bdnrd

fAdjust pointer and count.
dec si

inc cx

imp @8skip
ret

:End of word.
dec si

;End of word. Hash value is in DX, vpper-case wecpd is in WRDBUF,

ibI points to end of word + 1.
push ds si cx bx iSave the registers we will use for this step.

Gt its type,
jAbort if delimiter.
;Use case bit to convert tTo upper case.

rBave it in word buffer.

"words' amd should be skipped.

Adjust buffer pointer.

PROGRAMMER"S WORKBENCH

BEhlp:

BEcoll:

Efdned:
Edmake:

BEfd:
AEnwd;

ERherr:

¥or al,al Hull-terminate the word.

stosb

mow oX, :Caleulate the word®s length.

sub cx,offset wrdbuf

mov bx,dx ;Put the hash value in a useable register.
shl bx,1 ;Lower bit will be discarded, so shife,
push ss ;Initizlize DS.

pop ds

assume ds:dgroup

‘NoWw 1t 1s time to locate the word in the hash table if it is there,
Jof create an entcy if it is nok.

moyv es, hshptr

and bx, hshmek

mov ax,es: [bx]

and ax,ax

12 Almake

iWerify that the hash entry iz the correct one.

mov es,ax

mov ax,.cx

cmp es:[symsiz], ax
jnz BRcoll

mov 8i,offset wrdbuf
mov di, symnam

repe cmpsab

mov cx,ax

1z AREd

iCollision! Advance to the next candidate hash entry.

add bx,hash skip*Z?

imp Edhlp

ret

;We have ancountered this word for the first time.

iWe must create a pew symbol entry of the appropriate size.
sFirst decrement remaining free hash counkt.

dec hshent

1z #@herr

push cx

push bx

ROV 3X,CX

add ax, symnam+15
moy cl,4

shr ax,cl

call heap alloc pascal, ax

pop bx ;Racord symbol descriptor in hash table.
mov es: [bx],dx

pop Cx

mov @s, dy

mov @s: [symsiz), cx
meyv di, aymoam

mov si,o0ffzet wrdbuf
shr ex,1

IEP MOWEW

ol &% 1

Iep movsb

mov es5: [symref], 0
sMatching entry found!
inc es: [symref)

sGo on to the next ward in the buffer,
pop bx cx =i ds

aszume dz:nothing

jexz E@dnel

imp B@skip

iukt of hash space error.

®mOV aX,err hash

call error log pascal,ax

;Ne return from ERROR_LOG.

;Compare length of word,

sCompare actual text if that agrees.

;Caleulate length of symbol descriptor.

sRecord length.

rHMove text of word into symbol table.

tCleaar refarance count,
Incrament reference count.

L any.

; (Read buffer)

:Rmads
$05:581
BEbzd:

2Rarr:

the next hunk of buffer.
a3 start of data te read.

Feturns actual amount read in CX,

push dx bx

mov cx, tbf size*lf
mov bx, ABhandle
mov ah, 3fh

mov ds, rbfpir
xar dx, dx

int 21h

e BRerr

mowr OX, ax

Xor 51,51

pop bx ox

cld

ratn

iRead error.
mov ax,err read
call error log pascal,ax

sNo return is needed because ERRCR_LOE never returng,

;Use RETN so stack frame return won't be generated.

word read endp

i [Get total word count)
word_count proc pascal

Load total word capacity.
sBubtract actual remaining free words.

mov ax,hshsiz
sub ax, hshent
ret

word count endp

i [Get address of name of word)
word name proc pascal

arg BBword_desc:word

shroument 15 word descriptor.
mov dx, BBword_desc

ROV ax, symnam

el

word name endp

i [Get refcount far word]
word refcount proc pascal

arg Blword desc:word

nzes ds

rArgument is ward descriptor.

mov ds, BRword desc
mov ax,ds: [symref]
ret

word refcount endp

118

Dr. Dobb’s Journal, March 1990
261

i|Scan all words]
word scan proc pascal
arg E@snun_prnc:cnd&ptr ;Argument is procedure to call for each word.
uses ds,si

mov ds; hshptrc

x0T 51,51

mov ox, hshsiz

cld
Higlls: lodsw

and ax,ax

inz @Rtake
Bfnext: lecop BELI

ret
Bftake: push cx ds
push 55
pop ds
call Bfscan proc pascal,ax
pop ds cx
cld
imp ERnext

word scan endp

¢ [Compare raference counts for two word descriptors]
word compref proc pascal
arg Bfword descl:word, BRword descl:word
usas ds

mov ds,8@word descz

mav ax,ds: [symref]

mov ds, @@word descl

sub ax, ds:[symref]

cat
word compref endp
end

End Listing Three

Listing Four

:* Module description * This module contains the sort routine for SPECTRUM.
:This module was written using Borland's Turbo Assembler 2.0.

pv* Environment *#
model small pSet up for SMALL model.

locals ;Enmable local symbols.

4% Dublic gparatians *¥

public pascal SORT DO ;Pearform sort.
:#t ':'Ddﬂ' o

.code

;Set up D3 te nothing since that is the typiecal arrangement.
assume ds:nothing

i[Bort procedure]

sort _do proc pascal

arg BBarray:dword, BBcount iword, R@compare proc:codeptr
uses ds, si di

;First load up registers for internal recursion. D5:51 will be
jthe current sort array address, CX the count of elements to sert.
lds si,@fBarray

mov ox, B8count

call @8scort

ret

;Internally recursive sort routine. This routine accepts D5:51 as the sort
sarray addreszs, and CX as the count of elements to sort,
@%sart: cmp cx,2
jne Bfgo
retn
Biga: Save all registers we will change.
;Internally, DI and DX will be start and count of second merge area.
push 51 ex di dx
;Diwide into two parts and sort each ane,
Moy O¥, 0x
shr ex,1
sub dx,ox
call B@sart
mov di, 51
add di,ecx
add di,cx
xchg si,di
xchg cx,dx
call @@sort
xchg cx, d=
wchg si,di
;Now, merge the two areas in place.
;Each area must be at least size 1.
BEmrgl: ;Compare - DB5:DI - D5:5I.
call @@compare proc pascal.ds:[di].ds:[si]
11The following commented-out sequence is the code that would be required
;11f strict Pascal calling conventions were adhered to for calling
COMPARE PROC. You can see how much extra work this is!!
i push cx dx
Fush ds
mov ax,ds: [di]
mov bx,ds: [5i]
push =3
POR ds
call @Pcompare proc pascal, ax, bx
pop ds
pop dit o
and ax,ax
ins ERok
t8lide up first merge area using starting value from DI.
mov ax,ds: [di]

LTy

Wy Wy W e WE W TEE WE WE WE
s Wy Wa WE Wa Wa Ws WE A

=
=

(Listing continued on page 120)

Dr. Dobb’s Journal March 1990
262

119

PROGRAMMER'S WORKBENCH

Listing Four (Listing continued, text begins on page §4.)

push si cx
BAsllp: xchg ax,ds: [si]

add si,2

loop Gdsllp

xchg ax,ds: [8i]

pop cx si

add s5i,2

add di,?

dec dx

jnz REmrgl

jmp shork Bexi
Blak: ;Correct so far. Advance EI.

add si,2
loop BBmrgl

Agexi: ;Restore registers.
pop dx di cx si
retn

sort do endp

and

End Listing Four

Listing Five

fraser Pile: EPECTRIM.C riwss)

f* This C module is written using Borland’s Turbo C 2.0 and can be
compiled using the defawlt switches, It should be linked with the file
WILDARGS.0BJ from the Turbo C éxamples directory to enable the wild card
file name expansion facility. Without WILDARGS, SPECTRUM will still work
but will not be capable of expanding file names with wild cards.

The follewing i5 an example make file, where TA is the assembler name, TCC
is the C compiler name, TLINK is the linker name, \TC\LIB contains the C
libraries, and \TCM\EXA contains the Turbo C examples:

spectrum.exe: spectrum.obj heap.obj word.obj error.ob] sort.obj
tlink ‘tchlibhcOs+\cchexa\wildargs+spectrumthedp+wordt+error+aort spectrum,,

vichvlibhcs.lib;
heap.obj: heap.asm

ta heap /mx;
word.obj: word.asm

ta word /Smx;
error.obj: error.asm

ta error /mx;
sort.obj: sort.asm

ta sort /mx;
spectrum.obj: spectrum.c

Ecc —¢ spectrum
tf

f*%* Hegder Fileg *%%/
Finclude <dos=.h>
finclude <stdio.h>
Finclude <fcatl.h>

f*%* Function Protypes ***/

f* Used Locally */

int allocmem(unsigned, unsigned *);
Lnt Ereemem ([unsigned);

int _open| const char *, int oflags };

int close[int)
/" Error trapper */
extern void pascal error_init (void}:
extern unsigned pascal error_trap {veid pascal [*execution procedure){) };
extern void pascal error _log (unsigned error_cedse);
/* Hegap */f
extern void pascal heap_init (unsigned starting_segment,
unsigned segment count);
extern void far * pascal heap alloc ({unsigned paragraph _count};
J% Symbal table */
gxtern void pascal word init [unsigred maximum word ecount];
gxtern void pascal imrd:read [ungigned file handle};
extern void pascal word scan (veid pascal (*word procedure) [}):
extern char far * pascal word name {unsigned wnra_dEEEriptDr}:
extern unesigned pascal word_refcount |unsigned word descriptor);
extarn unsigned pascal word count (void};:
extern int pascal word compref (unsigned word descl, unsigned word descl);
S* Sorting procedure *J
extern void pascal sort de (unsigned far *sort array, unsigned sort_couat,
int pascal (*compare procedure) [} |;

fevr Cleobal Variables **%/f

{/* Error table */

char * error_table [] = |

FInsufficient Memoryin®,

®Out of Hash Space\n",

"File Read Errozin”,

"lsage: SPECTRUM filespec [filespec] ... |filespeclinifilespec may hawve 2?,*)\n"
i7

F* Brquments ¥/
int global arge;
char **glcbal argwv:

{* Memory */
unsiqned gegment_count;
unsigned starting_seqment;

f* Sort array */
unsigned sort index;
unsigned far *sort array;

fre2® Brocadures weer/
/* Fill sort array with descriptors */

263

vold pascal array fill{unsigned word desc)
I

a&zl_array{sn:t“index++] = word desg;
]

f* Main execution procedure */
yold pascal maln? (waid)
!
lng 1
unsigoed J;
int words = 0;
int file handle;
LE{ global arge < 2) |
ercor_leg(d);
]
heap init {starting segment, segment_count};
word init {32767);
for{ i=1 ; i<global arge ;7 i++) |
file handle = open (global argv[i], O BDOWLY};
Lf (file handle != =1)} |
word read{ file handle);
_cloge{ file handle };
] else |
error log{d);
I
I

{* Obtain arcray address */

sort_array = (unsigned far *}heap alloc{iword count(j+7}/8};
A% BLEL arcay */

gort _index = O

word scan(areay Eilllq

{* Sort arcay */

peintf (*Sorcting...\a"pq

sort_do {sert_array, sort_index, word compref});

f* - Display output */
rintf {"\oCount\tRord\n");
pEinkd: {f———hf -ty
for (i=0 ; i<sort index—1 ; i++) [
] = wnrd_refcauncisnrt_array[i]];
words = words + ji;
printE [("%d",3l;
pEEntE (" LE™)
printf (*"%Fs",vord name [(sort array(il));:
printE ["\n");
I
printf {"\nTotal unigque words:\tid\n", sort index):
printf {"Total words:it\t%d\n®, words);
I

/* Main procedure */
int main| int arge, char *argv([])
|

int i;

{* Copy arguments */

global argc = argc:

global argvy = argv;
error_initi);
segment count = allocmem 65535, &kstarting segment);
allocmem| segment count, Estarting segment };
1 = error trapg [main2):
R =
f* Print error message */
prantf (error table[i=1]):
t
freemem (starting segment];
return {1i);

? End Listing Five

Listing Six

specirum.exe: spectrum.ob] heap.obj word.ck] error.cbj sort.cbj
tlink /v ‘teh\lib\cQst\tchexa'\wildargs+spectrumtheaptword+errorteort,

gpactrom, . \tohlib\ecs.lib:
heap.ecbi: heap.asm

ta heap /mx /zi
word.obd: worcd,asm

ta word /mx /zi
error.oby: errar.asm

ta errar fmx fid
soct.oby: soct.asm

ta sort fmx /zi
spectrum.obj: spectrum.c

tee - -v SpeciEum

End Listings

264

PROGRAMMING PARADIGMS

Getting CLOS

hat makes Lisp relevant today

is that it is converging, in terms

of features and performance,

with other development envi-
ronments for large software projects.
When Guy Steele published Common
Lisp: The Language (Digital Press, 1984),
he codified what quickly became the
de facto standard for Lisp; now the
ANSI subcommittee X3]13 has nearly
completed a draft standard for Com-
mon Lisp that includes the Common
Lisp Object System (CLOS), an object-
oriented extension to the language. |
had this column half written when the
second edition of Steele’s book arrived,
containing much new material, includ-
ing an entirely new chapter on CLOS.
It forced me to go back and rewrite
several things; this column also cor-
rects some things I said last month that
are now out of date. Steele’s treatment
of CLOS is essentially the ANSI com-
mittee’'s treatment, and should be very
close to the final draft standard, due
out this year.

This convergence, though, is turning
Lisp into something new. At last year’s
OOPSLA meeting, Bjarne Stroustrup
summed up CLOS by calling it a multi-
paradigm language. The circumstances
(the developer of C++ being asked to
deliver a lecture on the virtues of CLOS)
left it unclear whether he meant it as a
term of opprobrium or as a compliment,

Michael Swaine

This column’s beat is paradigms, and
it seemed worthwhile to take a look at
how one paradigm (functional program-
ming) is extended to another (object-
oriented programming). In January we
looked at “pure” Lisp; in February we
saw how this pure functional paradigm
has evolved with the widespread ac-
ceptance of Common Lisp, and this
month we'll take a look at the objectifi-

122

cation of Lisp in the form of the Com-
mon Lisp Object System. We'll exam-
ine two themes: How the Common
Lisp data-type system underlies the
CLOS class system, and how the basic
concept of a function, a key aspect of
Common Lisp as well as of “pure” Lisp,
has been extended to the object world.

Typing Tutor

some of the things I said last month
have been superseded by the new edi-
tion of Steele’s book, and this edition
makes some things more official than
they were previously. Because of these
things and also because CLOS classes
map into the Common Lisp hierarchy,
I'll spell out the Common Lisp data
type relationships in some detail.

To begin with, it's not really a hierar-
chy, but an overlapping structure that
Rosemary Simpson, in her Common
Lisp: The Index (Coral Software and
Franz, Inc., 1987) calls a *“heterarchy.”
Two types stand at the very top and
bottom of the Common Lisp data type

heterarchy. ¢ is a supertype of every |

other type, and #i/ is a subtype of every
other type. No object is of type #nil
Every object is of type £

The following subtypes of type tare
of interest because X3J13 has defined
them to be pairwise disjoint: character,
number, symbol, cons, array, random-
state, hash-table, read-table, package,
pathname, and stream. A Common Lisp
object cannot belong to more than one
of these types, although it need not
belong to any of them.

In addition to these types, any data
type created by the defstruct or defclass
macros (a user-defined structure or a
CLOS class, respectively) is also dis-
joint from any of the above types. Any
two user-defined structures are disjoint
from one another unless defined oth-
erwise, and the same goes for classes.
Classes, though, are always defined in
terms of other classes. [won't say much

about structures here, and I'll discuss
classes later,

Functions are data objects, too, and
the data type function is disjoint from
some of the above types, specifically
from character, number, symbol, cons,
and array. The types character, num-
ber, symbol, cons, array, and function
are worthy of some elaboration.

Lisp Has Character

First, I'll discuss characters and num-
bers, correcting some outdated info from
last month.

X313 redefined the character subtypes
that were given in the first edition of
Steele’s book. Now the base-character
and extended-character subtypes form
an exhaustive partition of the type char-
acter. All characters are one or the other
of these types. Base-character is im-
plementation-defined, but must be a
supertype of standard char, which is a
set of 96 characters that any Lisp im-
plementation must support; the extended-
characteriype seemsto be X3J13's way
of dodging the confusion of bit and
font attributes prevalent in Lisp.

Formerly, the data type numbercon-
tained three disjoint subtypes, rational,
float, and complex. Now a new type,
real, has been introduced. The hierar-
chy runs like this: Types real and com-
plex are disjoint subtypes of type »num-
ber. other subtypes of type number
can be defined. Each of these two
subtypes also has two disjoint subtypes.
Type real has the disjoint subtypes ra-
tional and float; it's possible to define
other real subtypes. Type rational has
the disjoint subtypes infeger and ratio
other rational types can be defined.

However, type infeger has exactly
two subtypes, and Common Lisp does
not allow other subtypes of integerto
be defined. The two integer subtypes
are fixnum and bignum. The fixnum
data type is a conventional fixed-word-
length integer, the word length being

Dy, Dobb's Journal, March 1990
265

implementation-dependent. bignums are
“true” integers, their size dependent
only on storage limits, not on word
length. fixnums are more efficient than
bignums, and are used where efficiency
is more important than being able to
represent precisely the number of grains
of sand required to fill the universe.
For example, fixnum is the required
data type for array indices.

An object of type ratio represents
the ratio of two integers. The Lisp sys-
tem is required to reduce all ratios to
the lowest terms, representing a ratio
as an integer if that is possible.

Common Lisp defines four subtypes
of type float, but an implementation
need not have all four as distinct types.
Types short-float, single-float, double-
float, and long-float, in nondecreasing
order of word length, all must be sup-
plied, but any adjacent pair or triplet
of these may be identical. Any float
subtypes that are not identical must be
disjoint.

An object of type complex represents
a complex number in Cartesian form,
as a pair of numbers. The two numbers
must be of type real, and both must
be rational or both must be of the same
floating-point type.

Everything in Lisp is a List

Characters and numbers are straight-
forward data types, but symbols and
lists are trickier. Symbaols are named
data objects. Type symbol includes
among its subtypes one peculiar
subtype: type null. null is the type of
exactly one Lisp data object: the object
nil The status of type wnull is one rea-
son that the type relationships of Com-
mon Lisp form a heterarchy rather than
a hierarchy. null is a subtype of two
types, neither of which is a subtype of
the other: symbol and list. nil is the
only object that is both a [ist and a
symbol,

Actually, at another level, all sym-
bols have a list-like structure. Each sym-
bol has an associated data structure
called a “property list,” a list of pairs,
the first elements being (typically) sym-
bols, and the second elements being
any Lisp data objects. The purpose of
the property list of a symbol has evolved
over time; in Common Lisp it is less
important than in earlier Lisps, being
used now for data not needed fre-
quently, such as debugging, documen-
tation, or compiler information. Nei-
ther a property list nor a symbol is of
type list, but somehow everything in
Lisp is a list of some sort. (Viewed
another way, almost everything in Lisp
is a function, as we'll see shortly.)

The data type [list, though, is not
regarded as being as basic as type cons.

Dr. Dobb’s Journal, March 1990
266

123

PROGRAMMING PARADIGMS

These are alternate ways of viewing
the same thing. A /list is recursively
defined to be either the object nil or a
cons whose second component is a
list. A cons is a data structure with two
components, which can be pretty much
anything; usually, though, the second
component of a consis a list(or nil, the
empty list). The first components of the
conses making up a {ist are the ele-
ments of the list.

The data type cons, then, is the type
of the basic data structure used to build
lists. Any object that is a cons is also a
list, so list is a supertype of cons. The
data type /ist has exactly two subtypes,
and they are disjoint: cons and null. In
this sense, null is the (type of the)
empty list. fist itself is a subtype of the
data type seguence, which has one other
subtype: vector. vector and [ist are dis-
joint.

Vectors, and arrays generally, can
be rather complex. Arrays can be com-
plex, with the ability to share data with
other arrays, be dynamically sized, and
have fill pointers. An array that has
none of these features is called a “sim-
ple array.” Vectors are one-dimensional
arrays; they differ from lists in perfor-
mance characteristics. Accessing an ele-
ment of a list is, on average, a linear
function of list length, while the time
to access an element of a vector is
constant. When it comes to adding an
element to the beginning of a list or
vector, though, the relationship is re-
versed: constant for the list, and a lin-
ear function of vector length for the
vector.

One of vector’'s more interesting
subtypes is type string. Type string is
the union of one or more vector types
with the characteristic that the types of

124

the vector's elements are subtypes of
type character.

According to X3J13, the data type
function is strictly disjoint from data
types cons and symbol. But lists and
symbols are the only tools available for
referring to functions, or for invoking
them. This is probably a use-mention
distinction, but in any case, when a [is!
or symbol is used in this way it is auto-
matically coerced to type function. As
we'll see shortly, there’s some truth to
the exaggeration that everything in Lisp
is a function.

Lisp Has Class

CLOS is an object-oriented extension
to CL, adding four kinds of objects to
CL: classes, instances, generic functions,
and methods. The key aspects are ge-
neric functions, multiple inheritance,
declarative method combination, and
a metaobject protocol. Classes and in-
stances are lied to data types, generic
functions to functions. I'll say only a
little bit here about the metaobject pro-
tocol, which is not yet officially a part
of CLOS.

The Common Lisp Object System
maps classes into the data types just
described. Many Common Lisp types
have corresponding classes with the
same names, but not all. Normally, a
class has a corresponding type with the
S54me name.

Because the types do not form a
simple tree, and a type can be a subtype
of two types neither of which is a
subtype of the other, you might expect
CLOS to support multiple inheritance,
in which a class can inherit from more
than one superclass. In fact, this is the
case. The heterarchical structure of types
is mirrored in the inheritance structure
of classes, but CLOS requires that more
structure be added to establish a clear
precedence order for inheritance. For
example, the class vector has super-
classes sequence and array, just as the
type vector has supertypes sequence
and array, but from which superclass
does vectorinherit what?

CLOS resolves questions such as this
by requiring that you specify an order-
ing of direct superclasses when you
define a class (and by supplying this
ordering for predefined classes). The
business of deriving a full precedence
order is fairly complex, but the CLOS
class precedence order for predefined
classes resolves such issues. [n particu-
lar, the precedence order for the class
null is null, symbol, list, sequence, t,
and the precedence order for the class
siring is string, veclor, arrdy, sequence,
t. By implication, the precedence order
for the class vector is vector, array, se-
quence, b, so array methods have prece-

dence over sequence methods when
class vector is inheriting methods.

Everything in Lisp is a Function

The simplifying generalization is that
everything in Lisp is a function. It's
nearly true; any data object can be
treated as a function, or rather, as a
form. A form is simply a data object
treated as a function. You treat a data
object as a function when you hand it
to the evaluator, which is the mecha-
nism that executes Lisp programs. The
evaluator accepts a form and does what-
ever computation the form specifies.

The evaluator can be implemented
in various ways, such as by an inter-
preterthat traverses the form recursively,
performing the required calculations
along the way; or as a pure compiler;
or by some mixed form. Common Lisp
requires that correct programs produce
the same results, regardless of the
method of implementation. The evalu-
ator is available to the user via the
function eval, and also the special form
eval-when, which allows specifying that
a form should be evaluated, say, only
at compile time.

Not every data object specifies a mean-
ingful function, but most do. To the
evaluator, there are three kinds of forms,
corresponding to three nearly disjoint
data types. There are symbols, lists,
and self-evaluating forms (per X3J13,
all standard Common Lisp objects, ex-
cept symbols and lists, are self-evaluat-
ing forms).

Self-evaluating forms are taken liter-
ally by the evaluator; they return them-
selves on evaluation.

Symbols name wvariables, constants,
keywords and functions. They evalu-
ate to whatever they name; for exam-
ple, what they are bound to or what
they are set to.

Lists, from the viewpoint of the evalu-
ator, come in three varieties: special
forms, macro calls, and function calls.
Note that while a function is not a list,
a function call is.

Special forms are structural elements
of the language that don't fit the func-
tional paradigm well, such as the if-then-
else structure. These deviations from
the purity of the paradigm have been
a part of Lisp since the beginning, and
new special forms have been added
over the years, but in Common Lisp the
set of special forms is fixed and cannot
be extended by the programmer. A
macro is a function from forms to forms,
much as in other languages. A macro
call, when evaluated, is said to be ex-
panded. Programmers can extend the
set of macros. Despite the fact that they
are not true functions, special forms
look like functions syntactically, as do

Dr. Dobb’s Journal, March 1990
267

macros. The consequence of this is
that when you are sitting at the key-
board typing in Lisp code, it feels like
you are dealing with one kind of con-
struct: A parenthesized list that repre-
sents a function and its arguments.

A form that is a function call consists
of a list whose first element is a func-
tion name. The other elements of the
list, if any, are treated by the evaluator
as forms to be evaluated to provide the
function with arguments. There are two
levels of evaluation that take place when-
ever the evaluator deals with a func-
tion call: The arguments get evaluated,
then the function is evaluated with these
arguments. Typically, the evaluation of
the function produces a value, which
becomes the value of the original form.

There are two ways in which the first
element of a form can name a function,
one involving a symbol and the other
involving a list. Because symbols are
used to name functions, this is the most
direct and obvious way. The other way
involves the use of a lambda expres-
sion. A lambda expression is techni-
cally not a form, and cannot be evalu-
ated. It is a list, the first element being
the word lambda. The second element
is a list of parameters, and this is fol-
lowed by some number of forms to be
evaluated, which can use the parame-
ters. When the function that the lambda
expression names is applied to argu-
ments, the parameters are bound to the
arguments and the forms are executed
with these bindings.

Using a lambda expression as a func-
tion name is like slipping physical ac-
tions into your speech, as you would
be doing if you reterred to what comes
at the end of a joke by making a punch-
ing motion, then saying the word “line.”
Lambda expressions see their main use
in defining functions, roughly like this:

defun <fn-name> <lambda-list>
<forms=>

CLOS adds generic functions to Lisp.
Because the evaluation of functions is
central to Lisp, the extension of func-
tions to generic functions has a lot to
say about how it feels to program in
CLOS.

A generic function is a true Lisp func-
tion, is called with the same syntax,
and can be used in the same contexts
in which a Lisp function can be used.

Defining a generic function object is
similar to defining a function. You use
the defgeneric macro, basically like this:

defgeneric <fn-name> <lambda-list>
<methods>

The difference is that, rather than a

Dr. Dobb’s Journal, March 1990
268

fixed set of forms to be evaluated, the
generic function has a collection of
method descriptions, each of which
may consist of a number of forms. The
method descriptions have their own
lambda lists that must be congruent
with the main lambda list. Texas Instru-
ments has implemented generic func-
tions in its TICLOS as normal compiled
functions with pointers to data struc-
tures containing their slots. When the
function is called, it is up to the object
system to select the appropriate method
from its methods. Actually, not select;
the technique is more general than this,
and is called “method combination.”
The code eventually executed is called
the “effective method.”

The selection/combination has three
stages: select applicable methods, or-
der them by precedence, and apply
method combination. The method com-
bination, defined in the definition of
the generic function, can be as simple
as using the most specific method, or
it can be some function of some of the
applicable methods. Some built-in
method combination types are +, and,
or, append, max, and min, which per-
form the corresponding functions on
the applicable methods to produce the
effective method.

Some of the most interesting CLOS
functions are those that allow customi-
zation of the object system itself, by
manipulating metaobjects and metaclas-
ses. Unfortunately, these have not yet
been approved by X3]13 for inclusion
in the standard, They do, however, sup-
port the original spirit of Lisp as an
introspective language, with all the
strangeness that Douglas Hofstadter sug-
gested when I quoted him last month,
a quote that I here double-quote:

“A . double-entendre can happen
with LISP programs that are designed
to reach in and change their own siric-
ture. If you look at them on the LISP
level, you will say that they change
themselves; but if you shift levels, and
think of LISP programs as data to the
LISP interpreter . . . then in fact the sole
program that is running is the inter-
preter, and the changes being made are
merely changes in pieces of data.”

Editor's Note: For a general disciis-
sion of functional programming, see
“Functional Programming and FPCA
89" hy Ronald Fischer, DDJ, December
1989. Also, see A Neural Networks
Instantiation Environment” by Andrew

J. Czuchry, Jr. in next month’s DD] for

more information on programming in
Lisp.
DDJ

Viote for your favorite feature/article.
Circle Reader Service No. 10.

125

(PROGRAMMING

A Thousand CURSES
on TEXTSRCH

ast month we completed the re-

trieval processes of the TEXTSRCH

project, a “‘C Programming” column

project that we started in December
of last year. It builds and maintains a
text indexing and retrieval data-base sys-
tem that allows a user to find text files
by composing key word query expres-
sions. The program has two passes: an
index builder and a query retrieval pro-
gram. The query retrieval program
searches the text file indexes for files
that match the criteria of a Boolean key
word search. It delivers a list of the file
names that match the search. With the
software, developed through Ilast
month's installment, a user can deter-
mine which files in the text data base
match the criteria of the query, and
from there he or she can move the files
into another application, for example,
a word processor.

This month we will add a new fea-
ture to TEXTSRCH to allow the user to
select and view one of the files from
within the TEXTSRCH retrieval program
itself, Instead of merely displaying a
list of file names that match the query,
TEXTSRCH will display them in a menu
window from which the user can se-
lect. Then it will display the contents
of the selected file with the query ex-
pression’s key words highlighted.

We use this new feature o explore

Al Stevens

the screen driver software called
“CURSES."” CURSES is a library of func-
tions that were originally implemented
in Unix V. Its purpose is to allow you
to write portable, terminal device-inde-
pendent C programs. The Unix system
and the C language are still inexorably
oriented to the simple teletype-like con-
sole device. The standard input and
output devices are such that they can

Dr. Dobb’s Journal, March 1990

be anything from a clunky old ASR-33
teletype to a high-resolution, many
MIPS, full-color, belch-fire, neck-snap-
per graphics workstation. To support
them all, stdin and stdowt must speak
to the lowest-common denominator.

There are still many installations that
use simple terminal devices, and these
devices are grist for the stdin, stdout
mill. Terminals are the same yet they
are different, A system’s local devices
may be many and varied, and the re-
mote dial-up users are likely 10 be call-
ing in from any one of a number of
different terminal types. These differ-
ent video display terminal devices can
work as one because they share the
common ability to send and receive
ASCII text with carriage returns and
line feeds. If that is the only way a
program needs to communicate with a
user, then these devices share all the
commonality they will ever need,

There are, however, features in the
typical video display terminal that a
program can use to enhance its user
interface. Most such terminals have com-
mand sequences 1o clear the screen,
position the cursor, and so forth. As
you might expect, there is no one way
to do all this. ANSI published a stan-
dard, and some terminal devices com-
ply. The ANSLSYS device driver that
comes with MS-DOS allows a PC to use
the ANSI protocols.

Many terminals have their own, non-
ANSI ways to clear the screen, position
the cursor, scroll, and achieve other
video effects. A program written spe-
cifically to use the features of one of
these terminals must be modified if an
incompatible terminal is connected to
the program. As a programmer in such
an environment you have three choices:
You can write to the common base,
which means simple, unadomed, glass-
teletype ASCII text; you can use the
unique features of the terminal du jour

and modify your program every time a
new terminal comes into the picture;
or you can write to a higher-level video
protocol and have a system-level inter-
preter library translate your video com-
mands into the commands of whatever
terminal a user signs on with. The first
choice is the appropriate one for text
filter programs and console command
programs, The second one is appropri-
ate when the operating environment
is well-defined and contained, and per-
haps when user language performance
is an issue. The third choice is the best
one to make when you are striving for
portability and device independence.

CURSES

To provide for an environment where
users with different terminals can use
the same software, and where the soft-
ware can use the video terminal features
that go beyond simple text display, the
Unix system contains the “CURSES™ li-
brary and the “termcaps” data base.
The data base describes the video pro-
tocols of each of the terminals, and the
library provides functions that translate
a higher-level common protocol into
that of the user's terminal device.

CURSES functions facilitate a primi-
tive window-oriented display architec-
ture. You can define windows and use
them as virtual terminals. There are
character and string display operations,
cursor positioning operations, video at-
tributes (such as highlighting and nor-
mal displays), keyboard character and
string input, scrolling, and simple text
editing operations such as inserting and
deleting characters and lines.

CURSES works in memory bufters.
You address your operations to a de-
fined window, and CURSES makes the
changes in memory. These changes do
not appear on the screen until you tell
CURSES to refresh the window. This
method might seem peculiar to a PC

127
269

(PROGRAMMING

programmer who is accustomed (o in-
stantaneous video memory updates. But
it reflects its roots in the RS-232 ASCII
terminal. It takes more time to update
a terminal’s screen than it does to write
characters into a PC’s video memory.
For example, a 24 x 80 terminal operat-
ing at 19,200 baud will use about a
second to refresh its screen. A well-
behaved video library can keep a copy
of the current screen image and be
building another copy to contain what-
ever changes you are making. When
you tell it to refresh, the library can, if
the terminals features allow, refresh only
that part of the screen that changes.

Lattice C 6.0

Lattice C is an old PC workhorse that
has been around since Gates was in
short pants and Kahn was a dynasty. It
was one of the original full K&R C
compilers for the PC. The first Microsoft
C was in fact Lattice in a Microsoft binder
giving Microsoft an entrance into the
C compiler marketplace while they took
their time building one of their own.
Because Microsoft's own C compiler
targeted upward compatibility for pro-
grams written with their earlier Lattice
version and because the rest of the C
compiler business strives for compati-
bility with Microsoft C, it can be said that
Lattice had a strong influence on what
C compilers for the PC would become.

There are Lattice versions now for
other platforms, including the amazing
and wonderful Commodore Amiga. The
most recent version for the PC, Version
6.0, supports DOS and OS/2, conforms
with the ANSI proposed draft, and
comes with a source-level debugger,
an editor, an assembler, a librarian, a
linker, lots of utility programs, a com-
munications function library, a data-
base library that supports dBase III for-
mats, a graphics library, a library of
DOS-05/2 Family Mode functions, and
a CURSES library. If you do not require
an Integrated Development Environ-
ment after the fashion of Turbo C,
QuickC, and others (and many of us
do not), this is as complete a C lan-
guage development environment as
you'd want.

The Lattice CURSES Library

The Lattice CURSES library is available
in source code for $125 so you can
port it to the compiler of your choice.
This CURSES library provides a means
for developing screen programs that
can be ported between DOS, OS/2,
and Unix with minimum changes. I
used the Lattice compiler and this li-
brary to build the document viewing
fearure that we are adding to TEXTSRCH
this month.

128
270

Porting Crotchety TEXTSRCH to Lattice C

[wrote the first three installments of
TEXTSRCH in Turbo C 2.0. My inten-
tion was to make the code as close to
ANSI C and as far from the PC architec-
ture as possible to avoid restricting the
program to a particular platform. To
use the Lattice CURSES library, I de-
cided to port the code to Lattice C
rather than to port the CURSES code
to Turbo C. Somehow I figured I'd have
an easier time of it by porting my own
stuff. Maybe, maybe not.

CURSES is a library of
functions that were
originally implemented
in Unix V to allow you
to write portable,
terminal
device-independent
C programs

The port was reasonably easy with
just a few hitches. Here is what I ran
up against, and what follows is a new
crotchet that I hereby induct into the
“C Programming” column Crotchet Hall
of Fame.,

It is said that a compiler that com-
piles programs that comply with the
ANSI standard is considered to be an
ANSI-conforming compiler. But what
about those compilers that extend the
standard? For example, Watcom C sup-
ports the C++ convention for double-
slash comments. The Turbo C fopen
function allows the use of a non-stan-
dard mode parameter. To be sure, both
compilers will compile programs that
do not use these extensions. But, be-
cause you can write programs that use
them, you can unintentionally write
code that is not ANSI-conforming. Turbo
C has, of course, many other exten-
sions, such as pseudo-register variables
and interrupt functions, Many compilers
now include the interrupt function type,
which [first saw in Wizard C, the an-
cestor of Turbo C. Usually you can tell
the compilers to disallow such exten-
sions, that you are interested in writing
portable code, and the compilers will
comply. But when an extension takes
the form of the values accepted as a
function's parameters, the compiler does

not preempt the extension. So, in all
my innocence and with good inten-
tions aforethought, I used the Turbo C
“rt” and “wt” formats for the fopen
mode parameter. The Lattice fopen func-
tion, in true ANSI compliance, simply
refused to open those files because it
did not recognize the modes. Turbo C
also supports mode formats such as
“r+b” where ANSI and the Lattice docu-
mentation specify “rb+.” Naturally, I
used the non-standard formats in my
Jfopen calls. You should go through all
the code in <index.c> from last month
and change every “r+b" to “rb+"” and
“w+b"” to “wb+." Change all fopen
modes that include the “t” to remove
the “t.” I believe that the definition of
compliance should exclude such ex-
tensions.

The next portability issue came with
header files. Turbo C puts some func-
tion prototypes into more than one
header file. In this case, | included the
non-standard <process.h> to get the
prototype for the exitfunction. Accord-
ing to ANSI, this prototype is in
<stdlib.h>, and that is where Lattice
keeps it.

The moral of the story has to be: Get
a good ANSI function library reference
book and ignore the library documen-
tation that comes with your compiler.

Other storms in my port were the
result of issues unrelated to ANSI C.
The TEXTSRCH <cmdline.c> source file
uses the Turbo C findfirst and findnext
functions to search a file directory. ANSI
C has no equivalent functions because,
[suppose, there are some C platforms
that have no analogue to the DOS di-
rectory search. When I wrote about
those functions last month, I said you
would need to make substitutions if
you are using a different compiler. Now
I find myself in that same boat. Be-
cause Lattice has equivalent functions
in its dfind and dnext functions and
because it does not have the <dir.h>
file that ecmdline.c includes, I coded a
<dir.h> that substitutes with macros the
Lattice functions for the Turbo C func-
tions. You will find <dirh> as Listing
One on page 144.

I had the global variable OK defined
as (0, and the Lattice <curses.h> defines
it as 1. If you use the Lattice definition,
all the TEXTSRCH code works fine.

The next set of problems occurs be-
cause of errors in the Lattice header
files. It's difficult to imagine how these
errors have gone undetected until now.
The <curses.h> file includes definitions
of keystroke values for the keypad keys.
One of these is KEY _PGDN, which de-
fines the value returned when you press
the PgDn key. The definition, 0x0181,
is wrong. It should be 0x0151. The

Dr. Dobb’s journal, March 1990

(PROGRAMMING

(continued from page 128)

macros for the CURSES wstandout and
wstandend functions are incorrect. They
do not include the win parameter in
the macro expansion. Not only do you
get compiler warnings, but the func-
tions do not work. Finally, the Lattice
<stdlib.h> header file specifies in the
[freefunction prototype that freereturns
void, which is wrong. It returns int. [
had to repair the Lattice header files to
proceed.

My final problem was with the
CURSES screen driver software. For
some reason it reprograms the video
mode of my Vega Video 7 in a way
that makes the display go off into the
weeds at unexpected times, usually af-
ter I exit my program. To solve this
problem I would need to look at the
source code for CURSES, and time and
deadlines do not permit. A workaround
solution is to run the TEXTSRCH pro-
gram from a batch file that executes the
DOS command MODE COB80 after the
TEXTSRCH program exits to DOS.

TEXTSRCH

To install the new file-viewing func-
tions of TEXTSRCH, you must replace
the source file named <search.c> from
last month with the one in Listing Two,
page 144. You must also compile and

link <display.c>, Listing Three, page
144, and <error.c>, Listing Four, page
149, into the <textsrch.exe> program.

The BLDINDEX program works the
same way that it did before. The new
feature is in the TEXTSRCH program.
When vou enter a query expression the
results are now displayed in a screen
window with an ASCII -> cursor to the
left of each file name. With the up and
down arrow keys, you move that cur-
sor and scroll the display. When the
cursor points to a file you might want
to view, press the Enter key. The first
page of the selected document text dis-
plays in a new full-screen window. The
up and down arrow keys will scroll the
display. The up and down page keys
will page the display. The Home key
goes to the first page and the End key
to the last. During the display all occur-
rences of the key words from the query
expression display in a highlighted
mode. You can move to the next page
where a key word appears by pressing
the right arrow key. The left arrow key
moves you to the previous page where
a key word appears.

Here is how to use CURSES to achieve
these results. The process_result func-
tion in <search.c> is changed. Instead
of displaying the matching file names it
builds an array of those names. Then it

calls the CURSES initscr function to in-
itialize the screen manager, calls select_text
so the user can select a file to look at,
and calls the CURSES endwin function
to shut down the screen manager.

The select_text function is where the
user picks a file to view. We use the
CURSES newwin function to build a
menu window. The keypad function
allows the CURSES keyboard routines
to recognize the keypad characters, and
the wsetscrreg function defines the scroll-
ing boundaries of the window. Use of
this function prevents the window bor-
ders from scrolling along with the rest
of it,

The display_page function displays
a specified page of the file menu in the
window. Initially we call it to display
the first page. Then we draw a box
around the window, write the ASCII
-> selector cursor, and read the key-
board. The various cases under the key-
stroke switch, take care of moving the
selector cursor up and down, and pag-
ing and scrolling the file selector menu.
When the user presses the Enter key,
that case calls the display_text func-
tion, passing the name of the selected
file as shown in the menu window.

At this point we must consider the
values assigned to the different keys
we are interpreting. They are taken

130

Dr. Dobb’s Journal, March 1990
271

132
272

(PROGRAMMING

(continued from page 130)

from the Lattice <curses.h> header file
and they correspond to what the Lat-
tice version of the CURSES wgerch func-
tion returns for the cursor keys when
the CURSES keypad mode is on. These
values might not apply to different en-
vironments. Also see the use of the
VERT _DOUBLE and HORIZ_DOUBLE
global variables in the call to the CURSES
box function. These too appear in
<curses.h> and they correspond to the
PC'’s graphics characters for border char-
acters. You might need to change these
values to something that matches your
system. CURSES does not provide for
border corner characters, but the Lat-
tice implementation recognizes the IBM
set and uses the matching corner graph-
ics characters.

Look now at Listing Three to see the
code that displays a text file. The func-
tion named display_text opens the file
and calls its do_display function if the
file opens OK. If not, it calls the er-
ror_bandler function that you will find
in Listing Four. This general-purpose
function displays an error message in
a window, waits for a key press, and
clears the message.

The do_display function reads all the
lines of text from the chosen file and
stores them in a linked list in the heap.
The list connects each line to its fol-
lowing line and records the positions
of any key words in each line.

The findkeys function takes care of
finding and storing key word occur-
rences. It scans the line of text compar-
ing each word to the ones in the query
expression. If a word matches one of
the keys, its character offset relative to
the start of the line goes into the header
block of the line’s linked list entry. The
header block can contain up to five
key words for each line, which should
be enough to call your attention to the
line.

After all the lines of text are tucked
away in the linked list, the program
builds a full-screen window to display
the text. The display_textpage function
displays a page of text beginning with
a specified line. It displays the lines a
character at a time. If the current char-
acter position is marked in the line's
header block as the position of a key
word, the program calls the CURSES
wpstandout function to cause the word
to be highlighted. When the program
finds the next white space character, it
calls the CURSES wpstandend function
to return the display to the normal,
non-highlighted mode.

Once a page is displayed, the pro-
gram reads the keyboard. As with the
file selector menu, the keystroke val-
ues control the screen display. You can

Dr. Dobb’s Journal, March 1990

page and scroll up and down, and you
can move the next or previous page
where a marked key word appears.
The pagemarked function makes this
test, finding the first line of the speci-
fied page and looking at each entry in
the list to see if any line has a marked
key word.

When you press the ESC key, the
function calls welear to clear the text
display window and wrefresh to re-
fresh that clearing to the screen. Then
it deletes the window and frees the
heap of the linked list entries.

Back in the select text function the
file selector window gets redisplayed
and the user can pick out another file
to look at.

TEXTSRCH Performance

How effective is the CURSES approach
to the development of portable code?
The proof would be in the successful
porting of a program such as this one
to another platform. T am sure that this
program would port to a Unix system
with no more fuss than I had moving
it to Lattice C. There is, however, one
big area of concern in such a move.
We do not know how efficiently the
program would operate. CURSES is a
technique for the portability of screen
driver code to a multitude of display

devices. Tts implementation in the Lat-
tice library makes for an effective and
efficient program because they used all
the PC tricks for fast screen updates.
What's more, I developed this program
on and for a 20-MHz 386 computer,
The only way to know how well or
poorly this particular use of CURSES
would work on a slower machine or
with a different terminal is to move the
program. So, with that in mind, I moved
TEXTSRCH to the slowest compatible
computer at my house, an 8-MHz COM-
PAQ II. I am happy to report that it
works fine. This does not, however,
qualify it for an environment where the
terminal device is a serial VDT, I would
suspect that some of the ways I used
CURSES are not the best choices for
such a setup. A seasoned CURSES pro-
grammer probably knows intuitively
what to do and what to avoid to sup-
port the most effective user interface.,

The collective abilities and shortcom-

ings of CURSES across a wide selection
of terminals would, no doubt, influ-
ence the way you would design a user
interface. Given that one could learn
these boundaries and with all this in
mind, I can conclude that CURSES is
an effective technique for wide plat-
form independence of text-based screen
management. That, of course, is no

news to Unix programmers, who have
had CURSES for several years. It is news
to those others of us who might be
looking for tidy ways to develop pro-
grams on the PC that can be moved to
other operating environments.

Availability

All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif. residents add sales
tax) to Dr. Dobb’s Journal, 501 Galves-
ton Dr., Redwood City, CA 94063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the DIDJ Forum on Compu-
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
120072400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the
system answers, type: listings (lower-
case) at the log-in prompt.

DDJ

(Listings begin on page 144.)

Vote for your favorite feature/article.
Circle Reader Service No. 11,

Dr. Dobb's Journal, March 1990

133
273

STRUCTURED PROGRAMMING

Sifting for Sharks’
Teeth

rowling the 23 miles of aisles at

Comdex Fall, looking for program-

mer tools, is like sifting the sand

hills over in Lockhart Gulch west
of Scotts Valley, looking for sharks’
teeth, You know that they're down
there, and if you dig long enough you'll
find a few, However, the smart guys
run down to New Age Annie’'s Kosmic
Krystal Koop in Santa Cruz and buy
one of the nice clean sharks’ teeth An-
nie keeps in a “Save the Whales” bowl
next to the two-for-a-dollar tiger eyes.
Saves a heap o' diggin' — which is what
you're doing by buying this magazine.

Into the Qutback

What wild and wonderful programmer
stuff there is is not on the main floor,
by and large. (Exceptions might in-
clude the Microsoft booth, which was
the size of a small county in Arkansas.)
Finding the good stuff means traipsing
around the outlying hotels such as the
Tropicana and Bally’s.

The #1 Neat Comdex Idea for pro-
grammers comes from two different
vendors, who solved the same knotty
problem using two different technolo-
gies. The problem is a common one:
Running out of DOS memory while
doing a build on a large application
using command-line compilers and link-
ers. QuickPascal has this problem in
spades; for all its many virtues, QP uses
memory like cheap cologne and al-
ways runs out before Turbo Pascal.
Even a memory miser such as Turbo
will run out eventually if you hand it a
big enough application.

Jeft Duntemann, Ki6RA

Qualitas’ superb 386-to-the-MAX nib-
bles on the problem by using the 386’s
hardware memory manager to remap
some of 386 extended memory down
beneath the video refresh buffer. You
can get a contiguous DOS memory area
as large as 704K if you're using a mono-
chrome display adapter. A small San
Jose, California company named V
Communications takes the idea much

134
274

further, by moving the video refresh
buffer entirely to some other location
in 386 memory and making BIOS aware
of the move. Their Memory Commander
product can give you as much as 924K
of contiguous DOS memory, depend-
ing on what TSRs, device drivers, and
BIOS software needs space in the first
megabyte.

024K is an extreme case. The com-
pany says a typical system should be
able to have about 860K available for
compiles, if no attempt is made to ad-
dress screen memory directly, Because
command-line compilers and linkers
typically write to standard output rather
than the refresh buffer, this is not a
problem. And 860K could allow you
to build a much larger app. Think of
all that symboaol table space . . .

Invisible Software of Foster City, Calif,
has a product that does much the same
thing, only they use a little-known and
less-understood feature called “shadow
RAM,” supported by several of the Chips
and Technologies VLSI chip sets for
286 and 386 motherboards. Shadow
RAM is present only in those machines
using those chip sets. If the mother-
board is equipped with a minimum 1
Mbyte of RAM, (rather than the canoni-
cal 640K) the chip set can map portions
of that RAM where it needs to. The
feature was developed to allow the
copying of code from slower BIOS
ROMs into faster RAM to improve per-
formance, but it can also map RAM into
the segment space between $A000 and
$B800 (assuming you don't have a mono-
chrome display board) giving you a
contiguous DOS space of as much as
736K. So while the Invisible RAM prod-
uct does not give you quite as much
potential space as Memory Commander,
it has the advantage of working in the
great many inexpensive Asian 286 moth-
erboards that use the Chips chip sets.
(Memory Commander, remember, is a
386-only product.) You can download
a test program from Invisible Software’s
BBS to detect and report on whether
you have the necessary chip set in your
system. Call them for details if you're
interested; it's a very slick product.

Documentation on Demand

The #2 Neat Comdex Idea for pro-
grammers solves an ugly logistical prob-
lem facing shareware authors: How to
provide attractive printed documenta-
tion without going broke. As one of the
inducements to registering a shareware
package, many authors offer typeset
printed documentation. The catch is
that manuals cannot be printed eco-
nomically in batches of fewer than 500
or so, and costs don't really go down
until the numbers head up into the tens
of thousands.

However, when you punt your share-
ware creation out into the brave, cold
world, you have no idea how many
registrations you're likely to get. Worse,
products generally evolve far more
quickly than 500 manuals are likely to
be needed, leaving authors stuck with
piles of obsolete manuals that are fully
paid for — and worthless.

Workhorse laser printers (especially
HP’s that prints on both sides of a sheet
at once) and desktop publishing pack-
ages such as Ventura Publisher allow
high-quality, short-run printed output.
What's needed is a mechanism to bind
loose sheets together in a professional-
looking way, and at Comdex 1 found
one: The Unibind binding system.,

In a nutshell, Unibind works like
this: The sheets to be bound are placed
inside a plastic or card-stock folder with
a thermoplastic adhesive bar running
down the middle. This assemblage is
then placed in a toaster-gadget that
positions the sheets and cover accu-
rately, and heats them until the adhe-
sive melts and glues the sheets together
at the spine and the spine to the cover.
The system can bind stacks from 2
sheets to 650 sheets in size, and each
volume takes about 45 seconds to bind.

Systems similar to this have been
available for some time, but the ones
I've seen and used (typically from
Cheshire) are extremely messy and
mechanically fragile. Unibind is nei-
ther; the bound volumes are tidy and
show no loose traces of adhesive, and
the binder device has far fewer moving
parts than Cheshire and similar systems.

Dr. Dabb's fournal, March 1990

Once bound, the sheets are in there for
the long haul; I was unable to pull any
of the sheets from the bound volume
without tearing them. On the down-
side, the system has significant upfront
costs, and the per-piece cost of the
bound volumes is higher than volumes
printed and bound at a printing plant.
However, there is no waste and no
obsolescence, because the system truly
allows “documentation on demand.”
You print what vou need as you need
it, folding in updates as they happen,
no sooner, no later. You can support
several low-volume shareware prod-
ucts without going broke printing 500
manuals for each while expecting to
sell maybe 20 or 30 manuals per year.

It's getting tougher and tougher all
the time to put low-cost specialty soft-
ware products on the market and make
them pay. Shareware is our last best
hope in this regard, and Unibind can
help solve that ugly documentation is-
sue. If you're a shareware author you
ought to look into it.

Stereo-On-A-Card

The #3 Neat Comdex Idea for pro-
grammers may seem a little loopy, but
it solved an infuriating problem for me
and may solve that same problem for
you if you're one of the many program-
mers who listens to music while pro-
gramming. The Desktop Stereo prod-
uct from Optronics of Ashland, Ore. is
a half-sized board for the PC bus con-
taining a world-class FM stereo receiver
and 4 watts per channel amplifier. There
are no tuning knobs on the board
bracket; all controls are done electroni-
cally, through pop-up dialog boxes con-
taining, among other things (dare I say
it?) radio buttons. You can view the
FM band as a graph of vertical bars
displaying signal intensity at various
frequencies (neat touch!) and preset
up to ten frequencies with mnemonic
names such as “KRAP"” or "Hillbilly
Rock™ and punch them up like buttons
on your car radio.

The problem that this board solves
is that the expensive Japanese CD-
equipped boom boxes that many of
us place beside our RAM charged 386
boxes leak like sieves. Unless your fa-
vorite FM station’s towers are on the
next block, what you’'ll hear on your
FM receiver is likely to be your ma-
chine’s switching transients playing solo,
and that is dull (if powerful) music. I'd
long since abandoned FM and simply
play my CDs. The FM module on the
Desktop Stereo card is extremely well
shielded (it had better be!) and abso-
lutely quiet in the absence of signal
modulation.

Now I can listen to PBS again. 20

Dr. Dobb’s Journal, March 1990

plus stations accessible from fringey
Scotts Valley. No racket. Jetf-Bob says
check it out.

All Set with Modula

Let'’s continue our discussion of the
vice president of Structured Languages,
Modula-2. Will Modula ever overtake
Pascal for small machines? Probably
not. Unless. ..the president decides
not to run in OS8/2 land, in which case
the race gets interesting. Modula-2 is
already very big over on the OS/2 side
of things, second (so far as I can tell)
only to You Know What, If this contin-
ues for a few more years, the OS/2
products could achieve a formidable

critical mass, especially since Modula
contains standard syntactic support for
multitasking. (More on that very thorny
issue when I get OS/2 running reliably
on this sorry excuse for a 386 machine.)
If you're contemplating a project for
0S8/2, ignore those C-sirens claiming
that C is the only way to go. You can
do very well with Modula-2, according
to sources that I trust. Someday I'll know
from firsthand experience, sigh.

No, in this issue we're going to talk
about sets. Sets are what drove me out
of Modula-2 several years ago. When
the language spec was first released I
jumped on it, with full intent to port
over my disks full of code, written in

135
275

STRUCTURED PROGRAMMING

the faltering corpse of Pascal/MT+ for
CP/M-80. I dug in and discovered sev-
eral days into the project that I couldn’t
do it. My code was absolutely pep-
pered with the killer type definition:

TYPE
CharSet = SET OF Char:

Uh-uh, said the compiler. Sets in Modula-2
may have no more than 16 elements.

This is a serious semantic bite in the
buns. Sets work well for me and T use
them a lot, especially for building sys-
tems to handle characters moving from
one place to another, as from the key-
board to the screen or from a serial
port to the screen or to a disk file, Like
Maxwell's Demon, a set is a filter that
can pass odd characters among the
ASCII throng while denying passage
to others in a group just as odd. Con-
sider the elegance of this classic con-
struct:

IF AnswerChar IN [Y’,'y]
THEN Dolt ELSE DontDolt:

The alternative is this:

IF (AnswerChar = ‘Y") OR
(Answer-Char = ‘y')
THEN . ..

You might argue that the second form
resolves to fewer machine instructions,
and I'd argue back that you're rarely
going to have to execute 17,000 such
tests in a tight loop. Furthermore, what
about this:

[l IncomingChar IN WhiteSpaceSet
THEN .

There's simply nothing like sets for char-
acter filters such as this. It was just
possibly possible in some cases to pull
tricks with subranges of fewer than 16
characters, but the whole notion of-
fended me: Niklaus Wirth threw char-
acter sets out the window to make it
easier to implement Modula-2. There
are maybe two or three hundred po-
tential Modula-2 compiler implemen-
tors in this world. There are hundreds
of thousands of potential Modula-2 pro-
grammers. One suspects he skipped
Marketing 101 as an undergrad.

About then Turbo Pascal happened,
and Modula-2 slipped into eclipse for
some years. Logitech held the torch
alight all that time, but their product,
while solid, was complex and slow
and admittedly intended for internal
use. It wasn’t until JPI introduced
TopSpeed Modula-2 that the language
showed any serious life. Soon after-
ward, the Stony Brook compiler made

136
276

its debut, and I've begun to do some
serious work in Modula again.

The reason is pretty simple: TopSpeed
and Stony Brook have done the Awful
Thing: Extended Modula-2 by allowing
sets to have as many as 05,536 ele-
ments. Horrors. You might not be able
to port your dog kennel management
package to the Lilith operating system.
It is to cry real tears.

Niklaus Wirth threw

character sets
out the window

Duntemann’s One Law of Portability
Remember this, chilluns: For any plat-
form with I/O more complex than a
batch system, semantic differences be-
rtween platforms makes portability im-
possible. In other words, even if you
wrote your character-based PC kennel
manager in absolutely standard Modu-
la-2, could you port it to the Macintosh?
If you had written it for multiple termi-
nals under Unix, could you port it to
DOS? Get real — the effort spent re-
solving semantic conflicts would far
outweigh trifles like the shape of an IF
statement.

So let's quit arguing about some-
thing that's never been worth a plugged
nickel outside of academe anyway.

Watch the Corral, Not the Cows!

A set is an abstraction of a group of
values, indicating whether one or more
of those values are present or not pre-
sent. It's like a corral on a farm with
seven cows; at any given time a cow is
either in the corral or not. The cows are
in no particular order within the corral.
They're either there or else out making
things for the unwary to step in.

It's important to remember that the
set is not the cows: the set is the corral.
It's still a set even when it is empty.

In Modula-2, a set is defined in terms
of some ordinal type or subrange of
an ordinal type, including enumera-
tions such as the insufferable list of
colors that every writer on the subject
(myself included) has used in books
explaining the concept:

TYPE
Colors = (Red, Orange,
Yellow, Green, Blue, Indigo,
Violet);
WarmColors = [Red . . Yellowl]:
ColorSet = SET OF Colors;

WarmSet = SET OF WarmColors;
CardSet = {0..65535)
CharSet = SET OF CHAR,; (* Yay!*)

Beneath it all, in physical memory, a
set is a bitmap. There is one bit in the
set for each value that may legally be
present in the set. Each bit carries one
Boolean fact: Whether the value that
the bit stands for is present or not pre-
sent in the set. Adding a value to the
set is done by raising that value’s bit to
binary 1. Removing a value from the
set is done by changing that value’s bit
back to a binary 0.

A “full” set (that is, one having all
values present) is not one bit larger
than an empty set, Again, the set is the
corral, not the cows!

Set Operators

There are a number of operators and
standard procedures that work on sets
in Modula-2. The two most obvious are
INCL, which places a value in a set, and
EXCI, which removes a value from a
set. These are not present in Pascal. IN
is still there, doing exactly what it does
in Pascal: Return a Boolean value indi-
cating whether the value on the left is
present in the set on the right. Ditto
>= (set inclusion, right in left), and <=
(set exclusion, left in right) which do
much the same but for whole sets: >=
returns TRUE if all values of the set on
its right are present in the set on its left;
and <= returns TRUE if all values in the
set on its left are present in the set on
its right.

There are actually only four opera-
tors that are true set operators in that
they act on sets and return sets: + (set
union) — (set difference) * (set intersec-
tion) and / (set symmetric difference).
Of these, only the first three are present
in Pascal.

Set union of two sets returns the set
that contains all the elements present
in both of the sets taken as one. Set
intersection ol two sets returns the set
of values that are present in both sets,
but none of those values that may be
present in one or the other but not
both.

Set difference is a little trickier; my
Pascal prof explained it badly (getting
it mixed up with symmetric difference,
see below) and I misunderstood it
through ten years and two editions of
my book. Set difference of two sets
returns the set that consists of the ele-
ments in the set on the left once those
in the set on the right have been re-
moved from it.

Basically, set difference is a way of
pulling several elements out of a set
without using EXCL to do it one ele-
ment at a time;

Dr. Dobb’s Journal, March 1990

138

STRUCTURED PROGRAMMING

(continued from page 136)
AL Z) =M. Z]|

This set expression returns the set
{‘A’..L’} (Keep in mind that Modula-2
uses curly brackets for set constructors
rather than straight brackets.)

Finally, set symmetric difference
(which is not in any Pascal implemen-

Remember that the set
is not the cows: the set
is the corral

tation I'm aware of) is rather like set
union turned inside out. The symmet-
ric difference of two sets is the set of
all elements that are present in one or
the other set, but not in both sets. In a
sense, the symmetric difference of two
sets is what the two sets don't have in
common; for example, what remains
once their intersection (overlap) has
been removed.

Among them, these operators allow
you to do just about anything with a
set that you'd ever want to do. And
now that sets can have up to 65,535
elements in Modula-2, that's a lot.

The Naked Set
Wirth's original language definition did
not hard-code 16 as the number of
elements in a set. The number of ele-
ments in a Modula-2 set was originally
defined as the number of elements in
the machine word used by the system
for which the compiler was imple-
mented. In other words, in a system
with a 32-bit word there would be 32
possible elements in a Modula-2 set.

This makes those limited set opera-
tions very easy to implement, and very
fast, because they can be done using
the native bit-manipulation instructions
present in all modern-day CPUs, Re-
member that sets are bitmaps. Further-
more, the four true set operators bear
a certain uncanny functional resem-
blance to certain logical operators such
as ANVD, OR, and XOR

OR the bits of two sets together and
whammo, suddenly you have the un-
ion of the two sets. ANDthe bits of two
sets together, and what remains is the
intersection of the two sets. AND the
bits of one set with the complement
(reversed) bits of another set, and you
remove the bits of the complemented
set from the other set, that is, set differ-
ence. Finally, XOK the bits in two sets

together and what's left are the bits
that are present in one set or the other
but not in both sets, since XOR drives
identical bit pairs to 0. Voila: Symmetric
set difference.

This is, of course, exactly what Wirth
intended, and he intended for it all to
happen within the accumulator of the
host CPU, ensuring speed and minimal
fussing. Happily, in this brave new
world of fast global optimizing compil-
ers (Stony Brook's is fabulous) we can
have it both ways: When we're fiddling
small sets we can do it fast at one shot
inside the accumulator; when we're fid-
dling big sets we can do it a word at a
time and take the performance hit.

Now, Wirth defined a specific kind
of set that has no true analog in Pascal:
BITSET, a standard type supported in
all Modula-2 compilers. A BITSET is a
machine word used as a bitmap. All of
the set operators operate on BITSET
values. A BITSET's nominal values are
0 .. 15, but these are bit numbers more
than values. A BITSET is thus a sort of
naked set, in which the bitmap nature
of the set is laid bare and can be ma-
nipulated directly. A bit in a BITSET
does not abstract a color, or a4 charac-
ter, or a cardinal number, or a cow, a
bit in a BITSET represents a bit, period.

Twiddling Bits in Other Types

With very little futzing, this fills an ap-
parent gap in Modula-2: The lack of
explicit bit-manipulation facilities. Turbo
Pascal has explicit bitwise AND, OR,
NOT, and XOR operators for numeric
ordinal types, and it can also shift bits
in numeric ordinal values with its SHR
and SHI operators. Modula-2 has none
of these . . . or does it?

It does . . . but they only operate on
values of type BITSET.

No problem — just ask Pizza Terra.
(For those unfamiliar with the refer-
ence, see my May 1989 column.)
Modula-2 has explicit type casting
(which Wirth calls type coercion), so
if you want to fiddle bits in type CHAR,
cast type CHAR onto type BITSET, and
fiddle away! Any type can be cast onto
any other type of identical size, and
there are transfer functions such as Ord
to cast 8-bit types like CHAR and
BOOLEAN onto 16-bit types like CAR-
DINAL

For example, to AND a CARDINAL
variable MyCard with the value 128,
you could do this:

NewCard :=
CARDINAL(BITSET
(MyCard) * BITSET(128));

Here, MyCard and the value 128 are
(continued on page 141)

Dr. Dobb's Journal, March 1990
277

STRUCTURED PROGRAMMING

fcontinued from page 135)

both cast onta BITSETS, which are then
ANDed together by using the set inter-
section operator, which is equivalent
(on a bit level) to AND. Finally, the
result of the set intersection operation
is cast back onto a CARDINAL for as-
signment to the CARDINAL variable
NewCard.

This works . . . but it sure as hell isn't
obvious. Unfortunately, in Modula this
is how the game is played. Better to
disguise all this arm-twisting of types
(coercion is such a lovely word!) be-
hind some procedures with more mne-
monic names. This is what I've done
in the listings for this column, which
present a Modula-2 module called Bit-
wise. Listing One, page 150, is the defi-
nition module for Bitwise, and Listing
Two, page 150, is the implementation
module.

Bitwise provides function procedures
to perform bitwise AND, OR, XOR, and
NOT operations. (See Table 1.) Note
that the capitalization is different from
that used here in the descriptive text,
in order to differentiate my procedure
And from the existing (and incompat-
ible) Boolean logical operator AND.
(Case is significant in Modula-2, and
this is the first time in my career I've
caught myself being glad. Crazy world,
ain't it’) Additionally, Bitwise contains
procedures to set, clear, and test indi-
vidual bits, and also to shift values right
or left by up to 16 bits. This suite of
routines provides roughly the same bit-
banging power you get stock in Turbo
Pascal. This seems to be the lot of
Modula-2 programmers: To perpetu-
ally build what those Turbo guys have
come 1o take for granted!

The formal parameters for all of the
routines in Bitwise are type CARDINAL,
because CARDINAL is the unsigned 16-
bit numeric type in Modula-2, equiva-
alent to Word in Turbo Pascal. It's a
good basic foundation upon which to
cast all other ordinal types in Modula-2.
(And it's used quite a bit by itself.) If
you want to set bit number 3 in a char-
acter, for example, you could do this:

NewChar :=
CHAR(SetBittORD(‘A'),3));

The ORD transfer function casts the
character value onto a CARDINAL value
for passing to the SetBit function pro-
cedure, and finally the CARDINAL value
returned by SetBit is cast back onto a
character for assignment to NewChar.

Read over the code implementing
Bitwise and it all makes sense to you.
Again, understand type casting/coer-
cion and you've got it in your hip
pocket.

Dr. Dobb’s Journal, March 1990
278

When Words Runneth Over
There is something a little bit hazard-
ous about Bitwise. The SHR and SHL
routines can cause overflow errors if
you shift bits to the extent that 1-bits
roll out of either side of the 16-bit word
in which they exist. Stony Brook Modu-
la-2 code checks for overflow errors
and will crash your program when you
shift bits out of the word they live in.

Now, shifting bits off the edge of
their word is not necessarily a bad thing.
Sometimes you do it deliberately to get
rid of the bits in question. There's noth-
ing inherently damaging about it, be-
cause on a machine level the bits get
shunted first into the carry flag and
then off into nothingness. (What we
affectionately call “the bit bucket.”) Ad-
jacent data is never overwritten, no
matter if we try to shift a bit by (a
meaningless) 245 positions.

The way out is to turn off overflow
error checking. Enter here one of my

major arguments with Modula-2: For
portability’s sake (gakkh!) there are no
compiler toggles. Turbo Pascal has a
whole raft of them, things like {$R-/
and so on. The situation would seem
to call for bracketing the SHR and SHL
routines between compiler toggles that
switch overflow checking off only for
the duration of the routine, then on
again once the routine terminates.
Sorry, Charlie. As every good tuna
fish knows, compiler toggles are im-
plementation dependent and destroy
the prospects for portability. Lord
knows, we can't have that, now, can
we? The best that can be done with the
Stony Brook compiler is to turn off
overflow checking entirely within the
Bitwise module by changing the com-
pile options on a by-module basis. Be
sure to do this when you compile and
use Bitwisé If you're using a Modula
compiler in which overflow checking
cannot be turned off, you'd better add

Bitwssopersiors | . 1 Sefoperilen 0 o
AND 5 Intersection

OR _ + Union

XOR et : Symmetric difference

NOT {0..15] - BITSET “Full” set - target set.

Table 1: Relating bitwise operators to set operations

141

142

STRUCTURED PROGRAMMING

and SHR,

The Boss DOS Book

There is a certain type of book I call a

books of its type from being published.

hand while sitting in this particular chair.
I'm pleased to report that Ray has com-
pany, in the form of Que Corporation's

aged to summarize every BIOS func-

through V4.0, all mouse function calls,

interrupt programming, serial port pro-
gramming, and lots more.
The very best part about this book,

comfort if you can't find anything when

safety belts 1o any code that uses SHL

“category Kkiller;” it's the book on a
certain subject and tends to keep other

One of these is Ray Duncan’s Advanced
MS-DOS (Microsolft Press), a book that
has never been very far from my left

DOS Programmer's Reference, by Terry
Dettmann. On 892 pages Terry has man-

tion through PS5/2, every DOS call
all EMS function calls, and a blizzard

of other information including low-
level disk structure, device driver and

however, may well be its index. Hav-
ing 892 pages of information is small

Products Mentioned

Memory Commander

V Communications

3031 Tisch Way, Ste. 802
San Jose, CA 95128
408-296-4224

§129.95

Invisible RAM

Invisible Software

1165 Chess Drive, Ste. D
Foster City, CA 94404
415-570-5967

$39.95

Unibind

Unibind Systems

7900 Capwell Drive

Oakland, CA 94621

415-638-1060

Various configurations and prices
Contact the vendor for specifics

Desklop Stereo
Optronics Technology
P.O. Box 3239 :
Ashland, OR 97520
503-488-5040

$199

DOS Programmer’s Reference,

2nd edition

Terry Dettmann, revised by Jim Kyle
Que Corporation, 1989

ISBN 0-88022-458-4
Softcover, 892 pages, $27.95

you need it in a hurry. The index occu-
pies 33 pages, with about 100 citations
per page, set small in two columns.
Everything I tried to look up was either
indexed or not covered in the book.
(And things that weren't covered really
shouldn't have been anyway, like VGA
hardware architecture details.)

Altogether, the best hacker's book
to cross my desk in a good long while.
Get it.

Dredging the Channel
There are millions — nay, tens of mil-
lions — of DOS machines out there,
and various research reports I've seen
indicate that the greatest growth poten-
tial lies in machines of modest cost and
capabilities: The “bare bone” 88 and
280 clones that fill Computer Shopper
to a depth of 800+ pages every month.
There are already 30 million of them
(conservative estimate) and in another
few years there could be as many as
100 million of them out there, plugging
away. This is an utterly unbelievable
market for software products, and yet
the distribution channel has closed up
to the point that a small-time operator
(like most of us) has no chance to make
those millions of people even aware
of the existence of their products.
There has got to be a way. Any ideas?
Pass them by me. I'll be talking about
this subject in future months, and I'll
share some guerrilla marketing con-
cepts I've devised, and will discuss how
the little guys can shove some very big
rear ends out of their monopoly posi-
tion in the retail channel.

Write to Jeff Duntemann on MCI Mail
as fDuntemann, or on CompuServe to
ID 76117, 1426.

Availability

All source code is available on a single
disk and online. To order the disk,
send $14.95 (Calif. residents add sales
tax) to Dr. Dobb'’s Journal, 501 Galves-
ton Dr., Redwood City, CA 940063, or
call 800-356-2002 (from inside Calif.)
or 800-533-4372 (from outside Calif.).
Please specify the issue number and
format (MS-DOS, Macintosh, Kaypro).
Source code is also available online
through the DDJ Forum on Compu-
Serve (type GO DDJ). The DDJ Listing
Service (603-882-1599) supports 300/
1200/2400 baud, 8-data bits, no parity,
1-stop bit. Press SPACEBAR when the
system answers, type: listings (lower-
case) at the log-in prompit.

DDJ

(Listings begin on page 150.)

Vaote for your favorite featurefarticle.
Circle Reader Service No. 12.

Dr. Dobb’s Journal March 1990
279

(PROGRAMMING

display page(file selector, 0):

Listing One (7ext begins on page 127.) hraaks
e R =7 I K case KEY _END:
U mmmmma End key (to bottom of list) ----—- xf
f* Substitute Lattice directory functiens for selector = fetr - HEIGHT:
* Tuebo C directory functions if {selector < 0] |
L selector = 0
cursor = fetr=1;
#ineluede <dos.h> I
else
#define ffblk FILEINFD cursor = HEIGHT-1;
#define ff name name display page(file sealector, selectar);
break;
pdefine findfirst ({pakth,ff,artr) 4dAfind(ff, path, ster]
fdefine findnext{ff) dnext (£f) case KEY DOWN:
/* - down arrow (move the selecter cursor) -- */
i S i test at bottom of list -=======- v
if [(zelestor < fetr-1) |
selector++;
PE o fest at bottom of window =====- v
End Listing One if (cursor < HEIGHT=1)
CUrsor++;
elae i
/¥ =m== zorall the window up ocne ---- */f
Ii |I .T“r scrall (file_ selector):
i; O /% === paint the new bottom lina ---- */
mvwprintw(file selector, cursor+l, 3,
I s HEETENC mmmam e *f frnames [selector]) ;
|
£ !
* the TEXTSRCH retrieval process break:
ot 4
case KEY UP:
finclude <stdie.h> /¥ === up arrow (mowve the selector cursar) -- %/
tinclude <string.h> fH e test at top of list -====e=-- -
$include <curses.h> if (selector) |
#include "textsrch.h" —-selector;
i test at top of window =======- wf
static char fnames |[MAXFILES] [65]: if [ecursor)
static int fetr: ——EUrSOr;
elae {
static veid select_text{veid): /* —- scroll the window down cne ==~ %/
static void display page (NINDOW *file_selector, int pg)y wingartln(file selectorl;
void display text{char *fname); Jr ————- paint the new tap line -—==-= %/
mywprintw(file selector, 1, 3,
[# ---- procesg the result of a query expression gearch —-—-- *{ fnames [selector]);
void progess result {struct bitmap mapl)]
I]
int 1; break;
extern int file count;
fer (i = 0; 1< L[ile_cgunt; i++) cage AR
if [(gethit (&mapl, i)} f¥ == ygar gelected a file, go display it --- */
strncpy{fnames [fobr++], text filename(i), &4); display text (Enames[selectar]);
initser(); F* initialize curses +/ hreak;
galect text(); f* galect a file ta wview =/
endwin] ; /% turn off curses */ case EEC:
fetr = 0; ¥ mmmmmmeee awit from the display -—------—-- *f
| break;
R search the data base for a word makeh ----==== 4 default:
gEruct bitmap search (char *word) f¥ mmemmmmmeee= inyalid keystroke —--—-cco-eee #f
{ beapi():
gtruct bitmap mapl;: braak:
|
memaet [Emapl, Oxff, =izeaof (sbtruct bitmap)); H
if (srchtree(word) != 0) delwin{file selector); /* delete the selector window */
mapl = search index{word): clear{); /* plear the standard window =/
return mapl; refreshi);
]]
¥define HEIGHT 8 R display a page of the file selectar window ---—-—- *}
#define WIDTH 70 static woid display page (WINDOW *file selector, int line)
fdefine HOMEY 3 {
fdefine HIMEX 3 int y = 0;
werase (file salector);
#define ESC 27 while (line < fctr &5 y < HEIGHT)
mvwprintw (file_selector, ++y, 3, fnames[line++]};
Jt === gplect text file from those satisfying the query ===-= *f }
static void select text (void)
i
WINDOW *fila selector:
int selector = 0; /*selec¢tar cursor relative to the table */
int cursor = 0; [f*selector cursor relative to the screent/
int keystroke = Q;
f* -—— uge a window with a border to display the files — */
file selector = newwin (HEIGHT+2, WIDTH+2, HOMEY, HOMEX); End Listing Two
keypad (file selector, 1}; /' turn on keypad modes Gl |
noechofh ¢ /% turn off echo mode xF
wsetscrreg(file selector, 1, HEIGHT);/* set screll limits *f Li-'i'rﬂﬂg Three
fF mmm————— display the first page of the table -----——--—- EF JE e ek e S F G e S 4
display page{file selector, 0):
f* Display a text file on the SCrecn.
while (keystroke != ESC] { * User may scroll and page the file.
J* mm——— draw the window frame ------ af * Highlight key words from the search.
box(file selector, VERT DOUBLE, HORIZ DOUBLE}; * lger may jump to the pext and previous key word.
&
!
e e fill the selector window -—--====e==-- 2 f
ovwaddate{file selector, cursorc+l, 1, "-»"); #include <stdio. h>
wrefresh{file selector); finclude <stdlib.h>
3 tinclude <curses.h>»
f# e~ make a salection ———-—-—-----sss=aa nf tinclude <ctype.h>
kaystroke = wyetch(file selector))/* read a keystroke */ #include <string.h>
mywaddstr{file selector, curser+l, 1, " "i; #include "textsrch.h"
swibch {(keystroke) | #define ESC 27
casa KEY HOME: _
f2 mmme—— Home key {to top of list} -—-—— */ ¥ i nas header block for a line of text --—------— xf
selectar = cursor =) struct textline | fﬂ'ﬂﬂﬁﬂﬁ&‘d o pﬂgg 14’6)

144 Dr. Dobb’s Journal, March 1990

280

146

(PROGRAMMING

Listing Three (Listing continued, text begins on page 127.)

char keys[3); f* pffsets Lo key words o)
struct textline *nextline; J/* pointer to next line %y
char text: f/* first character of text */
| :
e listhead for text line linked list -------- o

struckt textline *firstline;
struct textline *lastline;

int pagemarked(int topline);

static void do display(FILE *fp);

static woid findkeys(struct textline *thisline);

static void display textpage (HINDOW *text window, int linej;

fH mmm—eee e display the text in a selected file --—-—--- = 8]
void display text{char *filepath)
I
FILE *Ep:
Iip = Eopen(filepath, "c®);:
if (Ep '= NWOLL) {
do_display{fph;
folose(Ep) &
}
elze f
A S the selected file does not exist --—— %/
char ermeg[A0];
sprintf(ermsg, "%s: No such file®, filepath):
ercor_handler (erm&g) ;

statlc void do_ display(FILE *fp)
]
I

char linefL2%]:

WINDOW *text window;

int keystroke = 0;

int topline = 0;

int linect = Q;

struct textline *thisline;

farstline = lastline = NJLL;
[# =wesme=== ragd the text file into the heap <<===== ")
while (fgets(line, sizeof line, fp} != NULL) i
line[78] = *\0";
thisline =
mallocisizeof {struct textlinel+strlen(linej+l}:
if {thisline == HWULL)
break: f* no more room *f

f# mem== glear the text line record space —-====-== */
memset {thisline, *\0", sizeof (struct textline) +
strlen(line]+1};

f* ===- build the text line linked list entry ==--== */
if {lastline '= NULL)
lastline->nextline = thisline;
lastline = thisling;
if (firstline == NULL)
firstline = tEhisline;
thizline-raextline = HWULL;
stropylkthisline->text, lina);-

f m=reemom—r—e mark the key words -<--=s=mseee- i
findkeya{thisline);
Linect++;
!
JE S = puild a window to display the taxt ------ =
text_window = newwin(LINES, COLS, 0, 0):
keypad (Cext _window, 1}; f* turn on keypad mode v
while {keystroke != EEC) [
f* === display the text and draw the window frame --- */

display textpage(Cext window, topline);
box (text window, VERT SINGLE, HORIZ SINGLE) :
wrefreshitext window);

i e e read 4 keystroke ====e===-———— */
keystroke = wgetch{text window);
switch {keystrokel {
case KEY HOME:
F e Home key (to top of file) ----- - &)
topline = 0;
nreak;
case KEY DOWN:
[¥ === dowt arcow [(scroll op) ———— */
if [topline < linect-{LINES-2))
topliness;
break;
case KEY UF:
e up arrow [scroll downp --—- */
if [topline)
-—topline;
break;
case KEY PGUP:
e T Pglp key (previous page} —-—-——-—]

tepline -= LINES-2;:
if (copline < 0]
topline = 0;
break;
cage REY_PGON:
o et Pgbn key (DXt page] ==s===mnmeas i
topline += LINES-Z;
if {topline <= linect=(LINES=2})
braak;
cage KEY END:

(continued on page 148)

D Dobb’s Journal, March 1990
281

L PROGRANMING

Listing Three (Listing continued, text begins on page 127.)

e End key (to bottoem of file} ------ =/
topline = linect- (LINES-2});
LE (topline < 0}
topline = 0;
break;
case KEY RIGHT:
f* — Right arrow. GO Lo next marked key word =/
do
J® == rapeat PGDN until we fipd a mack -- */
topline 4= LINES-2;
if (topline > linect- (LINES-Z}} |
topline = linect- {LINES-Z2};
iF {topline <)
topline = 0;
t
1f [pagemarkeditopling))
break:
| while' [topline &&
topline < Linect-(LINES=2)};
break;
cazea KEY LEFT:
/* Left arrow, Go bo previous marked key word */
da |
[== rapeat PGUP until we find & mack — */
topline -= LINES-Z;
if (topline < D)
topline = [;
if (pagenarkeditopline]]
break;
| while (topline > 0};
break;
case BSC:
break;
defaulc:
beepl);
break;

t
¥ e clean up and axit --—------- %/

welear {text_window};
wrefresh (Lext _window);
delwin {text_window) ;
thisline = firstline;
while (thisline != MNULL) [
free{thisline} ;
thisline = chisline-> pextline;

t

f* —--- test a page to see if a marked keyword is on it ——-— */
int pagemarked{int topline]

[
sLruct texiline =1 = firstline;

while (toplipe-- & tl1 != HULL)
£l = tl=znextlineg;
for (line = 0; £l != NULL && line < LINES=2; line++) {
if (*tl-zkeys)
braak;
Ll = Cl=->nextline;
|
return *tl-zkeys;
I

fdefine iswhitelc) {ighk==" * i lgi=="Ncf)l {c)=="'n"]}

f* ==== PFind the key words in & line of text. Mark their
character pesitions In the text structure --———--
static void findkeys{struct textline *thisline)
i
char "cp = Ethizline-zrext;
int ofpre = 0;

while (*cp && ofptr < 5] 1
struct postfix *pf = pftokens;/* the guery expression */f
while (iswhite(*cpl) /* skip the white space *f

Cptts;
if (*cp} L
f* ---- test this word against each arqument in the
qUEry expression —-—-——-—- */

while (pf->pfix '= TEEM) |
if (pf->pEix = QPERAND &&
strnicmp {cp, pi=->piizop,
strlen{pf->pfixop)} == 0)
break;
pi++;
!
it (pf-»pfix '= TERM)
bl the word matches a guery argument.
Fut 1ts offset into the line"s header --=- */
thisline->keys [ofptrtt] =
{¢p - &thisline->text) & 255;

f* -— gkip to the next word in the line --- */
while (*cp &§& !iswhite(*cp})
cptt;

]

/* -=- display page of text starting with specified ling === ¥/
static void display textpage (WINDOW *text window, int ling)
{

gstroct textline *thisline = Firstline:

int ¥ = L;

wclﬁar:tExt_wlndnw]r
wmove (text window, 0, 0);

int line; BT Y

148 Dr. Dobb’s Journal, March 1990

282

f* === point to the first kine of the page ====— b
while [line—-- && thisline != NULL)
thisline = cthisline=>nextliine;

JF mmm——— display all the lines on the page =====-= oy
while {thislipe != NOLL && ¥ < LINES=1l} |

char *cp = gthisline=>text;

char *kp = thizline=>keva;

char off = §;

whmove {Lext window, y++, 1),

T e a character at a time ==-===== % f
while [*cp) |
f* === is this character position a key word? -=- v/

if (*kp && off == *kpt |
wstandout (text window); /* highlight key words®/
]-:P++;

|

/®* -——- is this character white space? ---- *f
if (iswhice(*cpl}
wstandend{text window); f* turn off hightlight*/

f* ==—— write the character to the window ------ wy
waddch (text_window, “cp);
off++;
cptr g
J
ff mmmmeme= g ling At A Bimm ==—em=--=- " f

Lhigline = thisline=>nextline;

End Listing Three

Listing Four

/* General-purpose arror handler */

finclude <curses.hl
finclude <string.h>

vold error handlerichar *emsg}
{

int %, y:

WINDOW *error window;

X = (COLS - (strlen(ermsg)+2}} [2;

y = LINES/2-1;

error window = newwin({l, 2+strlenfermsg), y, Xb;
box [errer windew, VERT_SINGLE, HORIZ SINGLE);
myWprintw(error window, 1, 1, ermsg);
wrefresh (error_window) ;

beep () ;

geteh ()

wolaar (error window] ;

wrefresh (error window) ;

delwin {error_window] ;

End Listings

Dr. Dobb’s Journal March 1990

149
283

Listing One (7Text begins on page 134.)

l:l-. __ iI

STRUCTURED PROGRAMMING

IMPLEMEKTATION MODULE Bitwlsze;

AR
i BITWISE. MOD)
. A 1 : CARDINAL;
E‘ Definition Module :i TempSet : BITSET;
[* Bit-manipulation routines for Madula-2Z]
i x
EPRCCEDURE A i H H
(s by JeEE Diftanann) nd{&,B : CARDINAL) CARDINAL
{* For DDJ : March 1980 *) BEGIN
w R
. Bt Modikied LiE5 R o RETURN CARDINAL(BITSET{A) * BITSET (B));
! END And;
DEFINITION MODULE Bitwise; PROCEDURE Or(A,B : CARDINAL} : CARDIMAL;
PROCEDURE And(A,B : CARDIMAL) : CARDINAL; BEGTH
Iy Ty Ewgﬂgw;n_m CARDINAL (BITSET (A} + BITSET(B]);
PROCEDURE Xor{A,B : CARDINAL) : CARDIMAL;
FROCEDURE Not {Target : CARDINAL] : CARDINAL: I i e
PROCEDURE SetBit (Target : CARDINAL; BitNum : CARDINAL| : CARDINAL; BEEEUEN CARDINAL (BITSET(A) / BITSET(E)]:
PROCEDURE ClearBit (Target : CARDINAL; BirNum : CARDINAL| : CARDINAL: HE SES
PROCEDURE SHR (Target : CARDINAL: By : CARDINAL} : CARDINAL; BEGIN
PROCEDURE SHL(Target : CARDINAL: By : CARDINAL) : CARDINAL; _ RETURN CARDINAL({0..15) - BITSET(Tazget));
END Bitwise,
End Listing One | ppocenupe sevsit (Target : CARDINAL; BitNum i CARDINAL) : CARDINAL;
Listing Two
& o BEGZIN
--- : TempSet := BITSET (Target); (* INCL does not operate on expressions! *)
[: BITWISE.MOD i] IHCL (TempSet, Bithum MOD 16):
E* Implementation Module ‘3 RETURN CARDINAL{TempSet); (* Cast the target back to type CARDINAL *)
END SetBit;
[w Bit-manipulation routines for Modula-2 .l 2
(*)
(3 by Jeff Duntemann o E : B . . . P .
Y Por DOJ .+ Mozch 1680 " PROCEDURE ClearBit(Target ; CARDINAL; BitNum ; CARDINAL) : CARDINAL;
[.' l|:| L5 o a |
. Tempiet ;= BITSET{Target); (* EXCL does not operate on expressions! *)
i* NCOTES ON THE CODE: :; EXCL(TempSet, BitNum H0D 16) ;
- T -5 | %
{* In all cases below, BitMum MOD 16 is used asz & oy EHEEEE:SfE?ﬁ?IHHLﬁTemPSEhJf | st RHe SRdeh Rk SR eRe SRR
{* means of ensuring that BitHum will be in the " '

{* range of 0..15. MOD l& divides by 16 but returns *)

{* the remainder, which cannot be owver 15 when you *) R i gy ; 2 :
(% divide by 16, ") PROCEDURE TestBit (Target : CARDINAL; BitNum : CARDINAL) : BOCLEAN;
(W o o e LB
BEGIN
IF {BaitHum FOD 15) IN BITSET(Target) THEN
RETURN TRUE;
ELSE
RETURN FALSE:
END;
END TestBit;
PROCEDURE SHR({Target : CARDIMAL; By : CARDIMAL) : CARDINAL;
BEGIN
FOR I =1 TO By DO
Target := Target DIV 2:
END;
RETDRN Target;
END SHRE;
PROCEDURE SHL(Target : CARDINAL; By : CARRDINAL) : CARDINAL;
BEGIN
FOR I =1 TOD By DO
Target = Tacget = 23
END;
RETURN Target;
EMD SHL:
EHD Bitwise,
End Listings

Dr. Dobb’s Journal, March 1990
284

O F I NTERESTI

Codecheck, a rule-based expert system
that checks C and C++ source code for
maintainability, portability, and com-
pliance with in-house style, has been
announced by Conley Computing.
Codecheck has the ability to identify
the number of operators per expres-
sion and lines per statement, and it
provides a statistical analysis of code
complexity and style, allowing program-
mers to check for both industry stan-
dards and those established by their
company.

Codecheck also reviews code for its
portability to ANSI C and K&R C, among
others. Company president Patrick Con-
ley told DDJ that Codecheck can be
beneficial to both corporations and in-
dividuals, but especially to corpora-
tions that use many programmers for
single projects. “The problem is getting
programmers (o adhere to standards;
since everyone has their own Tower of
Babel concerning standards, Code-
check can be programmed to check
in-house style.”

Codecheck supports all C compilers
from major vendors, and is available
for PC-DOS and Macintosh at $495, for
OS/2 at $695, and for AIX, PC/IX, and
QNX at $995. Multiple copy and educa-
tional discounts are also available.
Reader service no 21.

Conley Computing
7033 SW Macadam Ave.
Portland, OR 97219
503-244-5253

The Paradox Engine, a C library for the
relational database Paradox, has been
announced by Borland International.
The company claims that this product
will enable C programmers to build
applications that create or access Para-
dox data because programs that use
the Paradox Engine are standard .EXE
files. The benefit is interoperability
among Borland's major business appli-
cations and languages, which theoreti-
cally allows the building of customized
computing environments.

A program written with the Paradox
Engine is compiled in C and linked
with the Paradox Engine library to build
an executable application that can dy-
namically access Paradox data. The PAL
language can also access Paradox ta-

bles.

152

The engine provides an API of more
than 70 funcitons, which allows the
manipulation of Paradox tables in sin-
gle and multiuser environments. The
C version should be shipping this quar-
ter, and will cost $495. A Pascal version
is scheduled for release sometime in
the middle of the year, and O5/2 and
Windows versions are also under de-
velopment. During the first 90 days of
availability, registered Borland users can
purchase the product for $195. Reader
service no. 22.

Borland International

P.O. Box 660001

Scotts Valley, CA 95066-0001
4(08-439-1622

VRTX-PC, a real-time environment for
the PC/XT/AT compatibles that allows
these machines to be used as both de-
velopment platforms and embedded
computers, has been introduced by
Ready Systems. Time-critical applica-
tions in which deterministic operating
system performance is necessary can
now be controlled by PCs. The com-
pany is excited that the VRTX-PC al-
lows simultaneous development and
execution of real-time multitasking ap-
plications, eliminating the need for low-
level hardware control on the PC, They
believe that this technology will reduce
development costs and get products
on the shelf faster.

The VRTX-PC real-time operating sys-
tem supports MS-DOS functions, in-
cluding all MS-DOS file and device
I/O, and can be executed as a DOS
resident program.

VRTX-PC includes a realtime ker-
nel, a real-time debugger, an input/
output file executive, a run-time library,
a PC support executive, and a window
manager that provides a user interface.
For application development, VRTX-
PC supports Microsoft C and Borland
Turbo C. The price for a single user is
§7600. Reader service no. 23,

Ready Systems

P.O. Box 60217
Sunnyvale, CA 94086
408-736-2600

The Sierra C toolset for the M68000 is
available from Sierra Systems. The
toolset includes an optimizing C com-
piler and complete C run-time library,
two assemblers, linker, librarian, code
management and debugging utilities,
a serial downloader, a high-speed par-
allel downloader, and a source-level
debugger. The company claims that
the code produced is position inde-
pendent, ROMable, and re-entrant.
The Sierra C compiler that is included
in the toolset is ANSI compatible and
supports the keywords and functional-

ity required for embedded systems pro-
gramming.

Compiler flags control individual sup-
pression of optimization techniques,
generation of floating point code (in-
line or for the 68881), formatting and
contents of the listing and assembler
output files, generation of source level
debugger information, IEEE floating
point operation modes, and register
usage, among others. Reader service
no. 24,

Sierra Systems

6728 Evergreen Ave.
Oakland, CA 940611
415-339-8200

PC Technigues, a new magazine for
programmers, has been announced by
The Coriolis Group. The first bi-
monthly issue will be published with
a March/April 1990 cover date. The
magazine will become a monthly pub-
lication in January of 1991,

PC Techniques will cover the DOS,
Windows, OS/2, and Presentation Man-
ager platforms. C, Pascal, Basic, and
assembly language will be covered in
every issue. Specialty languages like
C++, Object Pascal, Smalltalk, and Ac-
tor will also find coverage.

The Coriolis Group was founded by
DD columnist Jeff Duntemann and by
Keith Weiskamp, occcasional DDJ
author, PC Techniques is available for
$21.95 for one year and $37.95 for two.
Reader service no. 25.

Coriolis Group

3202 E. Greenway, Ste. 1307-302
Phoenix, AZ 85032
0602-493-3070

Two new journals, Inside Turbo C and
Inside Turbo Pascal, which offer pro-
grammers ongoing support of these two
Borland languages, have been an-
nounced by The Cobb Group. The
purpose of the two journals is to ex-
plore new algorithms, system tricks,
and product updates, including com-
plete source code. They will also con-
tain tips, programming techniques, prod-
uct news and reviews, as well as ad-
vice. And Inside Turbo Pascal covers
OOP with Turbo Pascal.

Each journal costs $59 for 12 issues;
sample issues are available. Source code
in both issues can be downloaded from
Cobb’s BBS, for a yearly fee of $30.
Reader service no. 26.

The Cobb Group
P.O. Box 24480
Louisville, KY 40224
800-223-8720

The original developer of Turbo Prolog,
the Prolog Development Center
(continued on page 157)

Dr. Dobb’s Journal, March 1990
285

286

0

F I NTEREST

(continued from page 152)

(PDC), has been granted the rights to
the product by Borland International.
The PDC will publish and market new
versions under the name PDC Prolog.
According to Michael Alexander at PDC,
“The new version is a superset of the
current Turbo Prolog. With the excep-
tion of the turtle graphics predicates, it
is source-compatible with Turbo Prolog,
so existing Turbo Prolog programs can
be compiled ‘as is” with PDC Prolog.”
And PDC Prolog supports the Borland
BGI graphics interface.

A new DOS version should be avail-
able by now, and registered users of
the DOS version of Turbo Prolog will
be able to upgrade for $79. The OS/2
version should also be available, and
will cost $599. Network support and a
SCO 386 Unix version is scheduled for
release in the second quarter of this
year. Reader service no. 27.

Prolog Development Center
568 14th Street N.W.
Atlanta, GA 30318
404-873-1366

Intek C++ 2.0 is now available from
Intek Integration Technologies. The
company claims the product has as
much power as AT&T's C++ 2.0 in an
80386 MS-DOS or Unix environment.
Intek C++ 2.0 translates C++ code into
C code. It supports most DOS C com-
pilers, including Microsoft C, Turbo C,
MetaWare High C and High C 386, Wat-
com C and Watcom C 386, and Novell
Network C and Network C 386,

This support also includes the C ex-
tended keywords near, far, huge, cdel,
pascal, and fortran, which makes it
useful with Microsoft Windows and
OS5/2.

The Intek C++ translator uses 386
protected memory mode, and can com-
pile large programs —up to 4 giga-
bytes. It supports multiple inheritance,
type-safe linkage, new and delete op-
erators as class members, overloading
of the ->, ->*, and, operators, const and
static member functions, and static in-
itialization. It requires 1 Mbyte of mem-
ory, M5-DOS 3.1 or later or Unix 5ys-
tem V/386, and costs $495. Reader ser-
vice no. 28.

Intek

1400 112th Ave. SE, Ste. 202
Bellevue, WA 98004
206-455-9935

A C++ compiler for 80386/486 Unix-
based systems has been released by
Peritus International. In addition to
AT&T C++ 2.0, the highly-optimized
C++ compiler also provides support
for K&R C and ANSI C; programmers
select the appropriate C dialect by set-

ting a compiler switch.

The compiler supports an extensive
set of data types, including 8-, 16-, 32-,
and 064-bit integers, IEEE-compatible 32-,
64-, and 80-bit floating point, user-
defined aggregate types, and C++ class
data types. The optimizations include
global register allocation, constant propa-
gation and folding, backward code mo-
tion with loop invariant removal, in-
duction variable elimination, redundant
store and dead code removal, and con-
stant elevation.

Company president Ron Price told
DDJ that Peritus intends on providing
class libraries and development tools
within the near future, including a pack-
age to provide a graphical interface to
the X Windows system. He also said
that the C++ is compliant to the AT&T
2.0 spec, except for multiple inheri-
tance, which will also be supported in
the near future.

The Peritus C++ compiler, which runs
on 386/486 systems under SVR3 Unix
and SunOS 4.0 Unix, sells for $1000.
Reader service no. 29.

Peritus International
10201 Torre Ave., Ste. 295
Cupertino, CA 95014
408-725-0882

A few new assembly tools are now
available. An assembly language library
written entirely in assembly language
has been released by Quantasm Cor-
poration. Quantasm Power Lib (QPL)
contains over 256 routines, provides
high-level functionality, and has the
ability to be customized.

QQPL can be used by both novice and
expert programmers. The documenta-
tion is coordinated with example pro-
grams on disk. The company claims
that the compactness of QPL makes it
convenient for programming memory
resident programs or TSRs.

The product includes a menu and
windowing system, over 75 string han-
dling functions, extended precision
math functions, a set of date/time func-
tions, encryption/decryption algorithms,
file name parsing, and sound control.
The company intends to have high-
level language interface routines avail-
able in the first quarter of this year.
QPL requires MS- or PC-DOS 2.1 or
above: 256K RAM; IBM PC/XT/AT,
PS/2 or compatible; Microsoft MASM,
Borland TASM, or SLR OPTASM. This
product is not copy protected, nor has
run-time royalties. The price is $99.95
without source code, $299.95 with.
Reader service no. 30.

Quantasm Corporation
19855 Stevens Creek Blvd.
Cupertino, CA 95014
408-244-6826

157

0 F I NTEREST

From Base Two Development comes
Spontaneous Assembly, an assembly-
language library that contains over 600
functions and macros, including string
and memory manipulation, near/far/
relative heap management, doubleword/
quadword integer math, date and time
manipulation, and more. The company
claims that every routine is hand-coded
and optimized, and are easy to use
because of the register-oriented parame-
ter-passing convention, Company
spokesman Alan Collins told DDJ that
“this product does for 8088-family as-
sembly language programming what
Borland did for high-level language pro-
gramming.”

Spontaneous Assembly supports all
Microsoft/Borland standard memory
models, as well as custom models and
mixed-model programming. The tool
sports a full-overlapping windowing
system with custom shadowing that al-
lows direct memory via screen access
or BIOS. DOS 2.0 or higher is required,
and MASM 5.1 or TASM 1.0 are recom-
mended. It costs $199, includes all
source code, and comes with a money
back, 60-day guarantee. Reader service
no. 3.

Base Two Development
11 East 200 North
Orem, UT 84057
800-277-3625

Another is DASM, a disassembler for
the 8086, 8088, and 80286, available
from JBSoftware. DASM is able to dis-
assemble and modify programs for
which the source code is unavailable.
It takes binary run files for DOS and
compatible operating systems as input,

and creates an assembly language file
suitable for modification and reassem-
bly as output, It acts as a virtual ma-
chine and maps the program being dis-
assembled. It tracks register usage and
determines the code, data, and labels,
allowing the user to then edit the out-
put and change the program.

DASM works by viewing commands
and procedures in their real-time pro-
cessing order, rather than in the se-
quence they appear in the program,
which JBSoftware claims makes the pro-
grams easier to interpret and edit. Some
of DASM’s other features include the
ability to generate appropriate ASSUMEs
and segment maps, to handle multiple
entry points, transfer vectors, and .EXE,
COM, and .BIN files up to 200K. It
costs $250. Reader service no. 2.
JBSoftware
701 Cathedral St., Ste. 81
Baltimore, MD 21201
301-752-1348

Two new software products for Mo-
torola’s 88000 RISC microprocessor are
available from Diab Data. The D-CC/
88K, an optimizing C compiler, com-
plies with the 838000 object code com-
patibility standard (OCS) and the Bi-
nary compatibility standard (BCS), and
conforms to the proposed ANSI C stan-
dard. Optimizations include global com-
mon subexpression elimination, life-
time analysis (color), reaching analy-
sis, automatic register allocation, loop
invariant code motion, constant propa-
gation and folding, dead code elimina-
tion, switch optimizations, and the abil-
ity L0 pass parameters into registers,
Diab’s MC88000 toolkit is made up

of the D-AS/88K Assembler, the D-LD/
88K Linker, and the D-AR/88K Archiver.
This package includes the D-CC/88K
optimizing C compiler. The assembler
is also OCS and BCS compliant, pro-
duces COFF object modules, supports
standard MCB8000 mnemonics, pro-
duces standard Unix directives for or-
ganizing code, among other things. The
linker performs literal synthesis, gener-
ates warnings for unidentified external
references, and is able to perform in-
cremental links. The archiver maintains
multiple files in a single archive file,
and supports Unix System V command-
line options. The compiler and toolkit
are available for the Sun3/5unOS, Mac
II/MPW, DECstation/Ultrix, and DEC
VAX/VMS, among others. Reader ser-
vice no. 33.

Diab Data Inc.

323 Vintage Park Dr.

Foster City, CA 94404

415-573-7562

Books of Interest

A comprehensive treatment of concur-
rent programming techniques in the
Strand programming language has been
published by Prentice Hall. Strand.
New Concepts in Parallel Programming,
by Stephen Taylor and Ian Foster, cov-
ers an introduction to Strand, basic and
advanced programming techniques, and
how to apply Strand, with examples
from both the academic and real worlds,
The price is $30. ISBN 013-850587-X.
Reader service no. 38.

Prentice Hall

Englewood Cliffs, NJ 07632
201-767-5937

DDJ

158

Dr. Dobb’s Journal, March 1990
287

SWAINES FLAMES

Pub Crawler

read a lot of magazines. I read during meals, while talking to Jon on the phone, and while visiting
I the little programmer's room. I also follow magazine's fortunes, and I thought I'd pass along the

latest rumors regarding some in which you may be interested.

CD-ROM End User. If you are interested in CD-ROM and haven't seen this, give it a look. Once
you get past the uninspired name, the amateur editing, and the boring design, you'll find a
bimonthly packed with information of solid value for both CD-ROM users and developers, written
and compiled by knowledgeable people.

Embedded Systems Programming. Those whose realm is the other kind of ROM should know
that ESP has gone to controlled circulation. What this means if you're a subscriber or potential ditto
is that you may get it for free. What it means if you're an advertiser or potential ditto is that you can
look for increased rates. [t's a zero-sum game,

Micro Cornucopia. Dave Thompson is considering taking his 50-issue-old hacker's magazine
monthly. He's looking for a “partner” — one with money (o invest, I gather,

Microsoft Systems Journal MSJhas been redesigned, and it's an improvement, though the
publication still works too hard at being taken seriously. It's probably too much to expect that M5fs
editors could learn from someone such as Dave Thompson how wil and playfulness can coexist
with solid technical content.

Other captive magazines. Sun's user magazine is about to be sold — “given” is a better word,
from what I hear of the deal — to IDG, publisher of Computer World, InfoWorld, PC World,
Macworld, etc.; while Aldus has launched a magazine with a surprisingly drab look. The content
is too self-serving, but the first issue contains a few good things, including what may be the most
quick-and-dirty DTP how-t0 ever written, and 4an interview with Steve Ballmer on O8/2.

Ziff-Davis, The company that publishes PC Magazine, MacUser, PC Computing, Digital Review,
and others (and that killed off Creative Computing, Popular Electronics, PC Tech fournal, and
others) has been rumored for the past six months to be on the block. The rumors, which are making
ulcers for Z-D emplovees, have been vehemently denied by Bill Ziff. The rumors are remarkably
detailed: Pat McGovern, chairman of IDG, has perused the perspectus; Cahners, publisher of
Mini-Micro Systems, has tendered an offer; the asking price is in the $800 million range; Goldman
Sachs & Co. is handling the deal. If you believe Ziff's denials, you are led to believe that the rumors
were started by one of Z-D's competitors. Whatever the truth, somebody is an awfully big liar.

Buzzwords
“Done deal” is one of those buzzwards that should buzz off, and I apologize for using it. Another

buzzword that [hope won't catch on in the 90s is “experience,” as in “user experience.” Apparently
the multimedia types within Apple are pushing to use it in the place of “user interface.” I get the
point, but I hope they keep this one in house.

My pick for the buzzword of the 90s is “facilitate.” At least it has the right polysyllabic, academic
aura, But I actually think it could be a GOOD buzzword. No, really. Here's why.

[helieve fervently in the value of education, but [don’t buy into the myth of teaching. The
existence of this verb “teach” conveys the erroneous impression that it is possible to force-feed
knowledge. The best teachers seem to understand that there is no such thing: Richard Feynman,
on being given a teaching excellence award by the American Association of Physics Teachers, said,
"I don't know how to teach. I have nothing to say about teaching,” then went on to deliver a brilliant
and entertaining lecture.

If vou can't teach anyone anything, then all you can do is get out of the way, move any obvious
obstacles aside, and let them learn. Facilitating learning, you might call it. The problem, I guess, is
that it's hard to do. Clearing the student's path is one of those subtle acts that succeeds only by
making itsell invisible.

Like good writing, and like good user interface design. Good writer Esther Dyson discussed the
desktop metaphor in the January issue of PC Computing, saying that it “is not meant to suggest
that the computer is a desktop, but to provide a sense of recognition and reasonable expectations.
This metaphor, so popular now, suggests tasks the computer can reasonably be expected to do.”
Suggest things. Create an environment the user can explore, letting the user discover things by
recognizing the familiar and following reasonable expectations into the unfamiliar. Get out of the
user's way. Facilitate. Yeah. I like the word. The trouble is that if it catches on, people will start
ringing the changes on it: facilitator, facilitation, facile. And sooner or later some user is going to
walk into a computer store and ask to be shown the facilities. And be taken to the little
programmer’s room. Might be all right if there are some good magazines in there.

Mlod Sicains

Michael Swaine
editor-at-large

160 Dr. Dobb’s Journal, March 1990
288

Dr. Dobb’s Journal Bound Volume 15 - 1990

he new decade begins and DD/ enters its 15th year of power programming. Every 1990 issue of Dr. Dobb’s Journal

has been collected and bound into this single volume. Included are the popular Annual C and Annual Operating

Systems issues. Featured are well-known contributors such as Michael Swaine, Al Stevens, and Jelf Duntemann.
There’s also the Dr. Dobb’s Journal 1989 index, and all the source code for 1990 (supplied on disk, PC/MS-DOS format).
Some of the 1990 topics include: |

Real-Time Data AC(]lliSitil]I]. Valuable information on all the tools you need (both hardware

and software), for your own data acquisition system.

Three-dimensional Graphics Using The X Window System. 3-b graphics are possible

with X Window systems! Here’s what can be expected from porting 3-D graphics to X, plus
solutions to some thorny problems.

68040 Programming. This member of the 680x0 family provides challenges for programmers at all levels.

& Neural Nets. DDJ presents an environment that dynamically creates neural networks. Also

included are discussions of the similarities and differences of various neural net models.

Memnry Management. Everything from how to take advantage of “handle pointers” to object swapping.
HypEl'tEKt. A behind-the-scenes look at the DDJ hypertext project.
EGI‘ﬂphiCS. From Super VGA programming to drawing character shapes with Bezier curves.

& & ngramming. Porting C programs to 80386 protected mode, encapsulating C memory
allocation, parallel extensions to C, and much more!

"l Unraveling Optimization. Examined are the practical and theoretical aspects of code
optimization using Microsoft C 6.0.

& Communications & CUHHECﬁVit}K Controlling Unix processes, designing for OSI, and
programming with Mac Comm toolbox.

SO0 i

‘ 53995 M&T

M&T Publishing, Inec.
ISBN 1-55851-143-0 501 Galveston Drive

Redwood City, CA 94063

9r8155

