
INFORMATION AND SUPPORT FOR BLITZ BASIC 2 USERS WORLD WIDE

ISSUE 3, March 1993

WO! Major-upgrade time! Ted now has new sex appeal including '
overscan as well as 3.0 compatibility. And debugger me! yup, it's '
the long awaited runtime debugger for Blitz2, completely and utterly
of use to everyone, it knows, it remembers, it.obeys and it's prett).' .
d~m slick. Sorry about the wait subscribers but we're sure you Will
agree the improvements make Blitz Users the power programmers
of the new age. Just a pity about the lack of contributions:) Simon

BACKIN
THE OFFICE ...

More gossip from the St Kevins Arcade office of Acid Software &
Vision Software.

The new Vision Software game Woody's World is finally complete with
the following specs:

DEVELOPEMENT TIME: Seven months
SCREENS: 4000
LEVELS: 60
GRAPHIC STYLES: 22
SOUNDTRACKS: 26
SCREEN UPDATE: 50 frames p/sec (100% Assembler of course)
COLOURS ON SCREEN: 32

Obviously its a big game, but it's also good fun and will be a welcome
addition to any sophisticated game player's software library, so go out
and buy itl

Mark Sibly has released his latest defender reincarnation into the
Amiga PDscene called OBLIVION. Needless to say it's fast, furious and
very very busy.

Mark's also had time to write Insectoids 2 an excellent Galaga style
game in Blitz2 which will be released soon on the upcoming Blitz PO
Disk 3. Accompanying Insectoids2 will be a new version of BuzzBar
and a new car racing game SkidMarks written by office junior Andrew
Blackbourne.

CD of the month goes to Sugar's Copper Blue, recomended to all
Husker Du fans out there, probably an acquired taiste for anyone else.

As for life in New Zealand, summer is finally ending and hopefully hot,
humid and sticky days are a thing of the past, replaced with nice windy
autumn days perfect for windsurfing and the like

2 BIltz User IssuB 3 .1

Blitz User is a
publication of Acid
Software.

Duplication of this
magazine is
prohibited however
all ideas and
programs included
In this magazine
may be used in
any size, shape or
form.

Acid Software
lakes no
responsibility for
the reliability of
programs
published in this
magazine.

Editor

Simon Armstrong

Art Director

Rod Smith

Forward all
contributions,
advertising and
correspondence to:

ACID SOFTWARE
10 SIKevins
Arcade
Karangahape Rd
Auckland
New Zealand

fax:64·9·358·1658

Editorial 4
Hmmm, so we're a little late but it's quality
not quantity yes?

Letters 5
Messages from all over the world and
beyond ...

Back in the office... 2
Gossip from the ever messy hive of
activity in St Kevins Arcade.

The Blitz2 Debugger 6
Docs on using the brand new debugger
added in the included upgrade disk.

Using The Blitz2 Debugger 8
Roger lockerbie contributes a hands on
approach to using the new debugger.

Optimizing Code 10
lifted from the new Blitz2 User Guide, hints
on speeding up your Blitz2 routines.

Also enclosed in this issue is a
questionaire that you should
return to us, it will help us in our
quest to develop Blitz2 into the
ultimate programming language
for Amiga programmers.

EDITORIAL
Happy New Year to all,
goodness it's March already!

Alright, so this issue is a lillie
late but we haven't been
slacking, it's just that it's so
easy to under estimate the time
it takes to get things done (even
with fast machines and great
programming languages).

)'11 try and catch up with
another issue next month
hopefully with some user
contributions:)

So whats new?

A debugger, a spunky ted, bug
fixes and more. The main
workload for me has been the
new User Guide which is going
to print next week, then it's
time to get the sales figures
cooking.

Included with this issue is a
questionaire which) hope you
will take the time to fill out and
send back to us. As Blitz2 is
continually under development
we need as much feedback
from users as possible.

If you've got a modem then see
if you can locate a BBS that
supports Amiga Net, a sort of
fido network for Amiga users.

There is an echo coming out of
Sydney Australia called
Blitz Ami, needless to say you
can meet other Blitz Users,
download and upload program
listings, get support, have a
moan an generally participate
in one of the more happening
echoes around.

Well the new Amiga 1200
finally arrived in New Zealand
which has given Mark new
inspiration.

4 Blitz User Issue 3

He's been hacking pretty hard
on the new wonder machine.
Commodore has stated that
"hitting the hardware" is
definately not on with AGA
and no hardware manual will
be made available.

Wo, first time) heard that)
thought they meant that
crashing the machine and then
smashing down on
CtrllAmiga/Amiga with both
fists was no longer acceptable
behaviour!

No, hitting the hardware is
where the Amiga programmer
accepts the ROM contains all
the routines needed to write fast
smooth scrolling dualplayfield
8 bitmap games. Ha ha bloody
hal

The truth of the matter, after
hacking the system copper lists
apart seems to be that the new
AGA design requires bulk
c1udges and a reference manual
would have to admit to the fact
and confuse any would be
hardware hitter.

Thats not to say there's no
hope, the whole chip set can go
4 times as fast in 'quad mode',

8 bitplanes with 100+ blits per
frame looks feasible.

The only problem is that
bitplane DMA is really weird
and the way the operating
system does smooth scrolling is
very scary (certain horizontal
positions will slow the system
down by 4 times, ouch!).

Anyway, AGA Blitz mode is
on it's way, it's just going to
take a lillie while.

As for extended operating
system support, it's right up the
top of the list of things to do,
next issue, promise!

More gadgets, better intuitools
and better text handling are all
being addressed.

As for our German users, our
humble apologies for taking so
long with the translations. They
are going to print this week.

Anyway, fill out the
questionaire and let us know
how you are getting on with
Blitz2, WE CARE!

Simon

LETTERS
Dear BlitzMan,

How can I switch Ted between
interlace and non-interlace?
The onlv wav I can work out is
if I deletel:BlitzEditor.opts
which is a real pain.

Reply:

The new Ted on this issue's
cover disk will now configure
itself to the same resolution as
the Workbench Screen. Both
interlace and overscan will be
the same settings as the current
workbench, I:BlitzEditor.opts
no longer saves this
information.

Dear BlitzMan,

I was very angry to read the
terse review of Blitz2 in the
latest issue of Amiga World.
It's reallyfunny, the guy
complains about the editor
scrolling too fast and having to
use quotes to terminate string
definitions, pretty stupid really.
Then he completely ignores all
the workbench support you
guys have added, I mean whar
was he on?

Reply:

Hmmm yes it was a very
strange review. We have just
finished a new User Guide
which should help point people
like him in the right direction.
But we would appreciate if you
could wrile to AmigaWorld as
a BlitzUser pointing out the
innaccuracies.

Dear BlitzMan,

So whar's the low down, I have
been waitingfora German
translation of the manualfor
ages, where is it? Working out
how to use Blitz2 with English
instructions is a real pain.

Reply:

I'm sorry it's taken so long, it's
off to the printer this week I
promise and will be available
no later than the third week of
March.

Dear BlitzMan,

I'm having big problems using
the FD converter and
implementing libraries such as
ASL into Blitz2. Can you help?

Reply:

A special Blitz2 developers kit
is being put together that will
include advanced
documentation and better 10015
for converting Amiga libraries
and developing custom
commands in Blitz2. It is
scheduled for release end of
April 1993.

Dear BlitzMan,

I am having grear difficulties
learning Blitz2. The User
Guide does not seem adequate
in its descriptions of NewTypes,
pointers and so forth.

Reply:

A new User Guide will be
available soon that will be
addressing these problems and
more. It will be made available
to existing Blitz Users at cost
price, more details will be in
the mail soon to all registered
Blitz Users.

Please all, send
BlitzMan your
thoughts, we
dedicated this months
letters column to
complaints,

However a bit of
humour, world news,
politics, sex, recipies,
music wouldn't go
amiss so send us a
letter.

I Blitz User Issue 3 5

Ir
The Blitz2 Debugger

If a runtime error occurs when a program is
run from the editor the Blitz2 debugger will be
activated. It of course must be enabled in the
compiler options requester.

It will not be activated if there is an error­
handler already enabled in the program using
the SetErr command.

The debugger can also be activated py using
the CTRUAL T C keyboard combination. The
STOP command can also be used in your
program to cause a break and invoke the
debugger.

The debugger is a powerful tool in finding out
causes of errors and locating bugs. The ability
to step back through code executed prior to
the break gives the programmer an excellent
understanding of how an error has occurred.

All debugger commands are initiated by
holding down CTRULEFT AL T and pressing
the appropriate command key. There are 2
types of commands available. One type is
selectable at any time while a program is
running, the other type is selectable only
when the program is stopped.

Note that when a runtime error occurs,
keylock will be automatically toggled ON. See
K (keylock) command below. This means that
the Ctrl/AII keys do not have to be pressed in
combination with the debugger keyboard
command.

These commands are available at all times:

C - stop program.

H - hide/show debugger window.

V - View/hide graphics behind debugger
window.

M - select hires/lores mode of graphics
when V command enabled.

These commands are only available when a
program is stopped:

Q - Quit program, ESC key also. (same as
executing End)

R - Run program.

6 Blitz USBr Issue 3 1

T - Trace program.

S - Single step program.

I - Ignore current command and skip to next
one.

L - toggle level trace mode for S & T
commands. This enables you to pass
through Gosubs, procedure calls and
For. .. Next loops.

B - Back-up to previous instruction
executed.

F - go forward to next instruction executed.

E - Evaluate an eXf?ression. The result of
the evaluation Will be printed out in the
debugger window.

X - Execute a command.

K - toggle keylock mode. If keylock is
enabled, you don't have to press
CTRULEFT AL T to initiate debugger
commands - simply type the command
letter.

= Debugger Features -==-

Display Options
The debugger's display will overlay itself on
any screen or if in Blitz Mode ontop of any
slice. The H, V and M commands control the
display options.

Hide will toggle the display on and off, View
will toggle the debugger between being
transparent (so you can see the background
display) and opaque.

When in transparent mode, Mode will toggle
the background display between hi-res and 10-
res. Because only 2 bitplanes are displayed
behind the debugger in transparent mode,
the display will not always be perfect but
should give the programmer an idea of what is
happening.

Tracing program execution

The debugger allows the user to single step
through or trace program execution,
displaying in it's window which command is
currently being executed.

Step is used to single step through your
program, each time you press S the debugger
will execute the command pointed to by the
arrow and stop.

Trace steps continuously through the code
displaying each command as it goes. To stop
the Trace use the C command.

Level is used to change the trace level, if
Level is toggled on, the debugger will not
trace or single step through the inside of
For .. Next loops but execute normally until the
loop exits.

It will also not trace the execution of any
procedures or subroutines called, this is most
useful for watching the program's main loop
while not having to sit through the trace of
each subroutine when called.

Resuming Normal Execution

Program execution can return normally after
the debugger is activated using the Run
command

If the debugger was activated using the STOP
command the arrow will be pointing to the
STOP, before continuing the command must
be skipped over using the Igonore command.
This is true for any command that has caused
a RunTIme error and invoked the debugger.
To return to the editor from the debugger
either the Quit command can be used or
alternatively the ESC key.

Viewing command history

The debugger keeps a record of the
commands executed before the program is
stopped in a large buffer.

The Back-up command will step backwards
from where the program halted, allowing the
programmer to view the previous commands
executed by the computer. A hollow arrow
marks the current pOSition in the history
buffer.

The Forward command is used to step forwards
through the history buffer, aHempting to step past
where the program was stopped will produce a
A T END OF BUFFER error.

These features are invaluable to following
through program execution up to where the
program was halted. If a program halted in the
middle of a subroutine or procedure you can step
backwards to find where the routine was called
from.

Direct Mode

While the debugger is activated the programmer
has two tools available to examine the internal
state of the program.

To find out the value of any variables the
Evaluate command can be used. A prompt will
appear, after typing the name of the variable and
hitting return the value will be printed on the
debugger display.

The eXecute command is used to run a Blitz2
command. A prompt will appear and the
programmer can then type in any Blitz2
command such as CLS or n=20.

Debugger Errors

The following errors may occur when using the
direct mode commands Evaluate and eXecute:

Can't Create in Direct Mode: Occurs if you try
and Evaluate a variable that does not exist
(hasn't been created) in the program.

Library Not Available in Direct Mode: Occurs
when a Blitz2 command is eXecuted and is from
a command library not used by the program. If
the program does not use strings for instance,
the string command library will not be part of the
object code and so any string type commands
will not be able to be eXecuted.

Not Enough Room in Direct Mode Buffer:
This error should never occur, if it does the object
buffer size in the Compiler Options requester
should be increased.

AT END OF BUFFER:Occurs if the
programmer tries to view Forward of where the
program stopped (see viewing command history).

I Blitz User Issue 3 7

- -----------------------~

Using The Debugger
Your new Source Level Debugger:

What is it?
How do I use it?
Why should I?

Distributed with this issue of Blitz User is
what, in my opinion, the single most
important add-on ever for Blitz Basic: a
Source level Debugger (SlD).

So what's this Debugger thing
anyway?

As you'll be aware, errors in programmes
that either mean the programme does not
function properly or crashes are called
BUGS. Well, a debugger aids you in your
quest to remove these bugs from your
programme to make it bug free.

Basically it's like having a can of fly spray to
kill flies with instead of hitting and misSing
with a rolled up newspaper. The SlD
distributed with Blitz2 is more than a
debugger, its an error handler as well so
without further adeu lets get into it...

What's Changed?

The first thing you will notice about the new
version of Blitz2 is the compiler options
requester. The following is a picture of the
new options requester:

As you can see the check boxes at the top
have been changed. They now consist of:

• Create Icons for Executables
• Runtime Error Debugger
• Make Smallest Code
• Create Debug Info

Make Smallest is now always set on when
creating executables.

One important thing to note is the absence of
the optimiser. This is intentional as it was
found that it tended to be a bit shakey in the
stability of the code it produced so its gone.
A new improved optimiser is planned in the
future.

8 Blitz User Issue 3

BLITZ IRSle 2 (IIIPILER DPTIIIIS

(rut. /(ons for [xf(utabl, Fi Its:
Runt jll. Error D.bug,.r ...
"ak, SMalhst (od.:
<rut. Dlbug Into tor [x.cutabl, Fihs:

Libs Bufhr:
Data Buff@r:
Strin. lufffr:

Resident
IRnills 118 !ill I Sounds II [!J ~I
[!] I (IltPllURUN II ClEm Exm,aSl£ I ~

The bit that really interests us is the Runtime
Error Debugger. It's this which decides if you
want the debugger active or not if this button
is turned off your code will run at full speed,
no error checking and will be as small as
poSSible, great for final executables but not so
hot for the development stage. If you click it
off then on again you will find some sub
options which we'll go through now:

Auto Run

With this on your programme will run as
normal and the debugger will only cut in if

1. Theres a stop command somewhere in
your programme flow

2. you press CNTRl-Alt-C (which now works
reliably in both Amiga mode and Blitz mode!!!)

3. the programme halts on a runtime error or
GURUS.

If this option is off however you will jump
straight into the debugger and be able to step
through your programme (more on this
stepping bizzo later) from the first command.

Interupt Checking

Enabled, this option will be able to locate
occurences of errors in any interupts. Unlike
errors in the main program, code in interupts
cannot be traced or Single stepped, however
execution can be continued after an interupt
error (the offending interupt is disabled).

Overflow Checking

Kind of a.mixed blessing this one, as a quick
rund0:-vn If you have overflow checking on if a
.b variable >127 or a .w variable >32768 it will
perform an overflow error

Without trying to get technical thats NOT
always what you want as those variables
unsigned can actually hold up to 255 and
65535 ~~spectively (unsigned means they can
be positive numbers only, thus the last bit of
the byte or word can be used to increase the
capacity by the power of 2 instead of being
used as a flag for a positive or negative
number. The upshot of all this is if you:

a) Plan to use .b or .w variables as
UNSIGNED and thus use larger values then
turn overflow errors OFF

b) If you dont know what the hell I'm going on
about then turn them OFF

c) If you understand what I'm on about you'll
know when you can and can't use them
anyway. (Ed: Jeeze waynel)

OK lets DEBUG ...

Here is an example programme for you to
type in that we are going to debug:

For i = 1 to 10
Nprint i

Nexti

OK now compile and run it.. .. Hmmm no
bugs, thats right none whatsoever, however
we are going to use this example to
demonstrate how you can SINGLE STEP
through your code using the debugger, and
check the status of variables and change
them mid stream.

OK so go to your options requester and click
on Runtime Error Debugger.

Enable the AUTO RUN option (this turns on
the debugger straight away at the start of the
programme) and compile and run the
programme again.

WOWI with any luck a green box should have
appeared at the bottom of your screen
showing a couple of lines of your code with an
arrow pointing at the current line. If not
retrace your steps back and check which step
you have missed out. If the debugger options

are not there at all then you may not have
installed the new software correctly.

If you're still with us then you've survived the
hardest part. Before we start stepping
through the programme heres a few things
about the debugger.

All the debuggers commands are activated by
pressing CNTRl and Al T and certain letter
keys simultaineously.

Also note that the debugger window (unlike
normal windows) is always activated so you.
do not need to click in it for it to receive input.

OK, STEP Time ...

if you press CNTRl Al T S the arrow pointer
in the debugger code should move to the next
line. This means that the previous line of
code (the For i = 1 to 10 statement) has been
executed and the nprint line is now the
current piece of code.

Right, so if you press CNTAl Al T S
(hereafter refered to as STEP) then the
number 1 will be printed to the current output
window, so as you can see you are quite
literally SINGLE STEPPING through your
programme. Now hit the STEP key again and
the 'next I' statement is executed and
woosh ... up the arrow goes back to the 'For
I .. .' statement. So as you can see the arrow
follows the programme flow exactly, groovy
huh?

Direct Mode

Right, now to show you a couple more useful
commands I want you to STEP though the
whole for .. next loop 3 more times so that the
value of 'i' should now be 4.

You can check this by going CNTRL Al T E
(hereafter called EVALUATE) you will get a
small '>' prompt in the debugger window.
Type 'i' and press return and it should give
y,ou the number 4 if you have done everything
right.

EVALUATE enables you to view the current I
state of any variable, string, pointer etc.

Now the real groovy bit, hit CNTRl Al T X
(hereafer called EXECUTE) and you get the
'>' prompt again. Now type 'i=8' and hit the
return key.

Blitz User Issue 3 9

------,

~====~========~~~--------------~
STEP another time through the loop and you
will find that 8 is printeclto the screen and i is
incremented to 9, in other words you can
interactivly execute functions or statements in
the middle of a programme, there is a small
limitation to this which I will discuss later.

STEP through the programme to the end (only
one more iteration) and the debugger will
return you to Ted, if you wish to terminate a
programme or exit the debugger prematurely
CNTRl ALTa (no prizes for guessing that
this means au IT) will exit the debugger and
return control to Blitz.

Once you are back in Blitz re-run the
programme, only this time when the debugger
window comes up press CNTRl Al T T (this
one will be refered to as TRACE because it
traces through the programme).

PHEWI the debugger window text would be
zooming as if on steroids and the code will be
executing at a slightly slower speed). This is
handy to watch programme flow up to a point
where you would CNTRl Al T C (pause
programme and enter debugger called
PAUSE hereafter) and either do some STEP,
EVAlUATE,orEXECUTE.

Now as I just said using trace you can zoom
through lots of code at a reasonable speed
and stop roughly in the right area of code but
this has a couple of problems.

a) If you had a For Next loop with 10000
iterations even tracing through it would take
an eternity

b) Stopping in roughly the right place is not
such a great thing to have to do. It would be
nice to be able to stop in exactly the right
place.

luckily you can, using the standard Blitz2
command StoP. the best way to explain is
with example code so lets do itl

mymem.l = AllocMem_(1024,0)

If mymem ;if the allocation worked
For i = 0 To 1023

Poke.b mymem+i,O
Nexti
Stop ;envoke debugger here
NPrlnt "Memory clear succesfuU"

Else
NPrint "Allocation failed"
End

Endlf

: 10 Blitz User Issue 3

Ok so what's happened here is (by the way
run this with your auto run OFF so that the
debugger does not kick in at first) your
programme runs at full speed, does the
memory allocation, does the 1023 iteration
mem clear loop and then Halts execution and
enters the debugger right at your stop or
break point.

You can then single step or whatever exactly
from this point onwards, you can set as many
stops as you like in your code. The next
important command to tell you about is the
RUN command CTl AlT-R.

If you are in the debugger and you've stepped
through the bit your interested in, done some
evaluation or whatever, and just want the
programme to run as normal, using the RUN
command will continue execution as normal.

One last command for assembly language
programmers (or the curious) CTl-Al T D (will
DISPlA Y the contents of all the 68000
registers, the Status bits etc etc so if you are
in assembly language code, or curious, you
can display at any time using the debugger, at
any rate it looks real impressive so try it once :»
As with programming no-one can teach you
HOW to debug, everyone develops their own
style however it basically boils down to a
process of elimination, having modular code
helps here, test a section of code or validity, if
it passes eliminate it from your enquiries
(rather like being a 'code policeman' really ...)

lastly a couple of things to remember ..

a) If you're writing games ONCE their
debugged TURN THE DEBUGGER OFF!

b) If you want ANY code to be as tight and
fast as possible, then TURN OFF the
debugger but makesure there's a

SetErr .. hand/er .. End Seterr

command in there somewhere so if something
has been overlooked then you can at least
exit cleanly without guruing someone's
machine and taking other tasks with you.

THIS IS IMPORTANT!! sort of a programming
ethic.

Seeya,

Roger.

Optimizing Code
Introduction

It Is always important to have a firm grasp on
how much time is being taken by certain
routines to do certain things. The following are
a few things to keep in mind when trying to
get the best performance from your Blitz2
programs.

Performance is most important with arcade
type games where a sluggish program will
Invariably destroy the playability of the game.
However, it is also important in applications
and other types of software to keep things as
efficient as ~ssible. Anything that makes the
user wait will detract from the productivity of
the package in general.

Algorithms

The most Important key to optimising different
routines is the overall approach taken to
implementing them in the first place. There
will always be half a dozen ways of
approaching a problem giving half a dozen
possible solutions. In programming, it Is
usually best to pick the solution that will
produce the result in the quickest time.

Loops

When looking for ways to optimise a routine
the best place to start is to examine the loops
(for .. next, while .. wend etc.). The time it takes
to perform the code inside a loop is multiplied
by the number of times it loops. This may
seem rather logical but often programmers will
equate the n.umber of lines of ~ode In a
routine to the time taken to execute it:

For i=l to 100
Nprlnt "hello"

Next

Will take exactly the same amount of time as
typing:

For i=1 to 1
Nprint "hello"

Next

the same as 300 lines of codel

Once one can visualise loops expanded out.
the notion that if anything can be removed
from inside a loop to before or after the loop
then DO IT becomes rather obviousl

Lookup tables

Replacing numeric functions with look up
tables is an effective way of gaining excellent
speed increases. A look up table or LUT. for
short, is an array that contains all the poSSible
solutions that the numeric function would be
expected to provide.

The most common example of using LUPs for
healthy speed increases Is when using trig
functions such as Sine or Cosine. Instead of
calling the Sin function, an array containing a
sine wave is created, the size of the array
depends on the accuracy of the angle
parameter in your program.

If a was an integer variable containing an
angle between 0 and 360 we could repla~e
any Sin functions such as x=Sin(a"l80/pt) WIth
x=sinlup(a) which will of course be more than
10 times as quick.

The array would be setup In the program
initialisation as follows:

Dim sinlup(360)
For 1=0 To 360

sinlup(i)=Sln(i"180/pi)
Next

Using Pointers

When doing many operations on a particular
subfield in a NewType a temporary pointer
variable of the same subfield type can be
created and that used instead of the larger
(and slower) path name:

UsePath a(i)\alien\pos

replaced by:

UsePath "a
"a.pos=s(i)\alien

Blitz User Issue 3 11

Testing Performance

Often it is important to test two different routines to see which offers the faster solution. The
easiest way is to call each of them SOOO times or so and time which is quicker by hand.

When writing arcade games that will be performing a main loop each frame, it is useful to poke
the background colour register before and after a specific routine to see how much of the frame it
is using.

The following will show how much of a frame it takes to clear a bitmap:

While Joy8(0)=O
VWait
CLS
;poke background colour red
MOVE #$fOO,$dff180

Wend

Different colours can be used for different parts of the main loop. Remember that at the top of
each slice the background colour will be reset.

Optimising Games

A quality arcade game should always run to a 50th, meaning the main loop always takes less
than a frame to execute and so animation etc. are changed every frame giving the game that
smooth professional feel.

This time frame means the programmer will often have to sacrifice certain elements in the game
and maybe reduce colours and size of shapes to get the main loop fast enough.

The follOwing are several methods for optimising main loop code in games:

• Disable Runtime Errors in the compiler options when testing speed of code as the error checker
slows code dramatically.

• Poke the background colour register with different values between main routines to work out
which ones are taking too long:

MainLoop:
VWait
Gosub movealiens:move.w $fOO,$dff180 ;red
Gosub drawaliens:move.w $OfO,$dff180 ;green

• Use OBlits if possible as they are the fastest way of implementing animated graphics In Blitz2.

• If aliens change direction using complex routines, split up the aliens into groups and every
frame select a different group to have their directions changed, the others can move in the same
direction until it is their turn to change. This method appfies to any routines that do not have to
happen every frame but can be spread across several frames in tidy chunks.

• Decrease the size of the display. During a frame, the display slows down the processor and
blitter. A smaller dispfay increases the amount of time given to the processor and blitter.

Conclusion

There is an infinite number of ways to increase the speed of Blitz2 code. Those developing
games on machines with fast mem and faster processors should remember that most people do
not have eitherl It is a good idea to disable fastmem when testing the speed of your code.
Again, always remember to disable the runitme error checker (debugger) when speed testing
your program.

Simon

