o RN At § 7 a e

s
-’
s o

New commands for cycling gadgets, radio buttons, AGA screens,
filled polygons and more. Plus free demo of Skidmarks our latest
inhouse Blitz2 project which will knock your socks off. Beta version
of our new Intuitools to plan your applications with and heaps of
hints and tips for programming in Blitz2. And a compilation of the
Australasian questionaires that have been returned by Down Under
Blitz2 Users, Thanks Guys! | Simon :)

BACK IN
THE OFFICE...

More gossip from the St Kevins Arcade office of Acid Software &
Vision Software...

Severe hardware problems have been encountered over the last few
weeks, suprisingly we were to find out, all caused by the office mousel!
Gee all those computers and only one mouse you ask, well this mouse
is kind of different, he seems to like crawling inside computers via rear-
expansion slots and bedding down for the night, and what really sucks,
is that he has been having quite a few wet dreams!!! These adolescent
rodent fantasies have already been responsible for taking out an entire
A2000 mother board (oh dear, now we’re getting into incest), and levels
of corrosion on two other machines are severe.

Struth cobbers! It seems that every time we get any good press in the
English Amiga mags they flatter us buy calling us AUSTRALIANS! Now
come on fellas, just because we're on the other side of the world
doesn’t mean you can lob insults at us with out fear of reprimand! So be
on your guard! And speaking of Australia, Acid Software will be
represented in Sydney first-third of July at the World Of Commodore
show. So if you're coming, don’t forget to bring along your latest Blitz2
programs to show us what you're up to.

Skidmarks? What kind of a name for a game is that you ask... A pretty
catchy one if you ask me!l Anyway, it is likely to be the first software
developed in Blitz2 to be released on a commercial basis. Hopefully in
a software shop near you mid July, featuring 6 tracks, better computer
competition etc. Congratulations to Andrew for Frooving you can write
such addictive software in Blitz2, hopefully it will spur other Blitz Users
to reach greater heights.

Anyway, besides the loud 4 player skidmark competetions (thats the
computer version) its been heads down and hard at work. A new game
is on it's way from Vision, this time its a rotating helicopter blaster that
has to be seen to be beleived (nothing cute about this hell raiser). CD of
the month goes to Aerosmith (even though nobody here likes it), drug
of the month goes to Nicobrevin which is aiding me in another attempt
to kick the cancer sticks....

Blitz User Issue %- I

No.

Blitz User is a
publication of Acid
Software.

Duplication of this
magazine is
prohibited however
all ideas and

rograms included
in this magazine
may be used in
any size, shape or
form.

Acid Software
takes no
responsibility for
the reliability of
programs
published in this
magazine.

Editor

Simon Armstrong

Art Director
Rod Smith

Forward all
contributions,
advertising and
correspondence to:

ACID SOFTWARE
10 StKevins
Arcade
Karangahape Rd
Auckland

New Zealand

fax:64-9-358-1658

CONTENTS

=S LA

Gossip from the ever messy hive of

Back in the office... 2
activity in St Kevins Arcade.

Editorial 4
Latest state of play in the world of |
Blitz2 development and marketing...

Letters 5
Yup, original correspondence for once!

Questionaire Results 7
Highly professional statistical analysis

of the 1000s of returned questionaires,

this month, from our faithful Australasian
users.

Buggy Booboos 8
Back by popular demand, an assortment
of faux-pars or is that botch ups...

NEW COMMANDS 9
AGA palette control 9
Screen & Bitmap extensions 1
New gadget handling for Blitz2 1
Date & Time commands 1
Environment functions 1
Powerful, new drawing commands 1

Tri Analyse 18
For all the budding Blitz2 Triathletes out

there keeping fit (i.e. not for the smoking, |
drinking, slothful layabout types). Alcohol, |
Nicotine intake management extension next i
issue... |

Roger’s Beginners Column 20
Hand's on Blitz2 for the non-advanced... |

Useful OS Calls 24

EDITORIAL

Happy Happy, Joy Joy, it’s
another issuc of Blitz User,
woza, infact it’s issuc 4! The
good news is that weé now have
100% German manuals
available, are back in stock of
English packages and are
looking forward to selling
heaps of Blitz BASIC’s in the
next few months,

Those interested in developing
applications in Blitz2 will
appreciate the new features this
month. We have extended the
gadgets library to handle
cycling text gadgets and
exclusive gadgets (radio
buttons). Plus there’s support
for some AGA screen modes as
well as 24 bit AGA palette
handling.

On my side I’'ve extended the
commands in the 21 drawing
library to handle bitmaps larger
than 1024x 1024 and also added
polygon drawing commands.

Everything should be stable on
accelerated Amiga’s now that
we have sorted out vector base
relocation stulf. The debugger
and hi-frequency AGA screen
modes are still not compatible.
We will have a display
independent debugger option
avatlable soon, until then,
you’ll need to stick with 50-
60Hz displays while
developing stult in Blitz2,

We had excellent responses
from the questionaire that went
out with issue 3. This month
features a compilation of
results from our Australasian
Blitz Users. Next issue we will
cover the German and U.S.
ICSPONSCS.

What we would dearly like to
sce now from Blitz Users are

4

Blitz User Issue 3]

programs written in Blitz2. It’s
all very well to harp on about
support for AGA and 3.0, but
surely the primary objective is
to develop software that will
run on ALL Amigas.

Besides the software we have
developed here in NewZealand
with Blitz2 I have not scen or
heard of anything thats being
developed by Blitz Users. Sure
we receive lots of messages
regarding stuff you guys want
added but it would certainly
help the cause if we got a disk
every now and then with
programs people are working
on. Otherwise it starts to feel as
though Blitz2 is just our in-
house development language...

Hmmm, what else is in this
issuc. Well I could go on about
Skidmarks, it’s certainly
waisted enough of my time
play testing it for Andrew :)
With the new tracks added I'm
really looking forward to
showing that not only can you
write commercial quality
software in Blitz2 but you can
write chart-topping software in
Blitz2 as well.

0O.K. so whats on the top of our

P
F

i rw—ge gy,
-

FE

list of things to do now that
issue 4 is finished? For starters
we need AGA support in Blitz
mode so we can get a 256
colour version of skidmarks
released. Hi-frequency
debugging is high on the list.

I’'ll be polishing off the new
Intuitools program and
hopefully get it to generate
most of the code for the user
interface so programmers can
concentrate on the core routines
etc.

Mark has been working on his
own 3D library and has
developed a rather amazing 3D
shape editor. Hopefully that
and the library will be ready for
next issue. In the mean time
check out the darts demo on the
cover disk and have a play with
some of the control routines.
Anyway, please try and send us
some demos of what you are
working on. The result will be
that we work even harder on
improving Blitz2 for you!

Keep hacking...

SIMON
t k€

7

LETTERS

Dear BlitzMan

I am a registered owner
of both the original Blitz
Basic and Blitz2. Using
Blitz I wrote "Sword of
the Warlock" a Bard’s
Tale type game. I've sold
a small number of copies
and received a lot of
compliments about it.
Now I'd like to upgrade
Warlock using Blitz2.

I sent Acid Software in
Mesa Arizona my $15.00
for the annual newsletter
sub and after several
months still have no
newsletter or disk
updates. I can’t tell you
how important it is that I
get some help. I want to
begin programming but
can’t really start unless I
have all the commands 1
need.

Thanks for your time and
help.

Alan Broz

Alan, you could have
sent a copy of Sword of
Warlock with the letter!
Anyway sorry about the
U.S. support for Blitz2.

Hopefully things are now
straightened out and you
have got hold of the
previous upgrades and
can start porting the
game to Blitz2, look
Sforward to hearing how
you get on.

Dear BlitzMan

Blitz2.0 is working fine,
however 1 have a few
questions:

* When compiling a
custom library do I use
the Create File or
Create Resident option?

* When compiling the
custom library I continue
to get "Wrong Number
of Parameters"” on the
Isubs line

* How do I change the
timing of the
soundtracker player for
proper replay on NTSC
machines

* Do you have a BBS
where registered users
can get access to update
files.

Mike Hurt

Mike, thanks for vour
letter. You need to
"Create File" when
compiling a custom
library such as that
Jound in issue #1 of
BUM. Make sure you are
using curly brackets
when calling macros
such as !subs, also you
need to supply 3
parameters. (More info
in BUM#2)

At the moment we do not
have support for correct
soundtracker replay on
NTSC machines, we'll
get onto it. As for the
BBS, we should have one
up and running in the
U.s.

Call Dave Maziarka on
(608)257-1975 for more
information.

Dear Blitzman,

I have been using Blitz2
for a couple of weeks
and beleive it to be a
pretty good language
with a lot of potential,
although there are quite a
few places where BBS
could stand a great deal
of improvement, namely
the editor:

Blitz User Issue & 5

Ist up the Language in
General:

1. access to system date
2. ability to access bold,
italics and underlining
when printing to both
the screen and especially
the printer 3. access to
speech synthesiser

2nd the editor:

1. use of any font rather
than the two supplied

2. when you hit return
the editor should open a
new line at the current
cursor position

3. backspace should
delete end of line
characters

4. auto indenting of
structure code

If these few changes
were implemented there
is no telling how far this
language could go in the
Amiga community. | for
one would recommend
your language to my
friends and fellow
Amiga users.

As it is now I have a
slight problem
recommending your
program because of
these slight
imperfections...

Thanks for your kind
attention...

6

Blitz User Issue 3

Dewey A Fish

Hi Dewey, thanks for
your comments. We have
had LOTS of complaints
about TED, and
hopefully we will
upgrade him again soon
including most of the
features you mention.

As for the compiler, we
have support for speech
and system date/time
stuff already, print codes
etc. hopefully next
month. Stay Tuned!

Dear Blitzers,

A friend of mine uses
Blitz2 and swears that it
is the best thing he has
ever seen. I saw some of
the stuff he has done and
I was really impressed.

I just recently bought an
A1200. Do you have a
version of Blitz2 which
supports the AGA
modes as well as the
standard ones? If so
when will it be
available?

Hope to hear from you
soon

Kevan Stannard.

Yo Kevan, If you're
reading this at your

friends place then you'll
be pleased to see the
inclusion of some of the
AGA stuff you requested
in this issue. If you've
gone and bought Blitz2
and registered then |
suppose you'll be even
happier that you can start
messing with 24 bit color
etc. right away.

If you have any
comments about
Blitz2 or just want
to say hi and let us
know what you are
working on at the
moment then
please, drop us a
line!

Send mail to:
10 StKevins Arcade
Karangahape Road

Auckland
New Zealand

or send us a fax on:

+649 358 1658

Blitz 2 Questionaire
Australasian Results

The following is the results from the 40 or so
questionaires returned from Australasian Blitz
Users. German and U.S. results will be
published in issue 5 of Blitz User Magazine.

Hardware

On the hardware front | was quite suprised to
see how many people have upgraded to the
new A1200 machine. We've got two in the
office and although we still haven't added any
fastmem to them due to the stupid prices,
they seem to be a fast reliable machine.

So stats for the different Amigas are:

A500 users =44%
A1200users = 18%
A2000 users = 18%

A100Q users =7%
A3000 users =7%
A4000 users =7%
A600 users =0% (wo, popular machine!)

Also 56% of Blitz Users have modems.

Languages

As was suspected Amos and Arexx come in
tops, to be expected | suppose, quite a few
people have been messing around with E
which we have also had a dabble with.

AMOS 25%

AREXX 25%

AMIGABASIC 8%

CANDO 8%

E 5%

C 5%

ASSEMBLER 5%

GFA 3%

PASCAL 0% (for ABOO owners only!)

Not as many assembler programmers as |
expected, maybe I'm the only one who
rehgarcils Blitz2 as the best assembler around,
oh well...

Using Blitz2

Well, you couldn't get a more mixed bag than
asking what type of programs people wanted
to develop in Blitz2. This of course doesn't
make our job any easier having to cater for
every man and his dog!

The main things that stood out were perhaps

a need for better audio control and some

gilscussion on calling DOS commands from
itz2.

The results for types of programs users were
keen on developing were: :

Utilities 50%
Games 1%
Strategy 12%
Music 12%
Educational 10%
Graphics 8%
Conclusion

Overall, the %eneral consensus was that
people were happy with Blitz2, a lot were
having trouble getting to grips with the
documentation (which is an ongoing job for
us) and we were definately not supporting the
beginners enough.

There is a new User Guide that users can
upgrade to (included in German manual), and
we will be developing a series of beginner
tutorials to coincide with a special magazine
promotion that we will be starting in the U.K.
shortly.

Anyway, if you haven't returned your
guestionaire please do so today, we will be

oing another at the end of the year to try and
gauge where we are heading and to keep up
to date with what you the user need from
Blitz2, the language that just keeps on
growing!

German & U.S. scores next month...

Blitz User Issue 3'_ 7

P—

BUGGY
BO0B0O0OS .

This column has been reinstated after
several issues which, yes OK we did have
lots of bu? reports, well anyway this will be
a regular feature.

Once again, if you find a bug in Blitz2, have
some serious problems with the
documentation please drop us a line,
otherwise, how do we know to fix them????

Compiled list of bugs fixed since release...

Accelerated Amigas have the ability to
relocate trap and interupt vectors in 32 bit
memory, Blitz2 now handles this minor
inconvenience.

All bitmap based drawing commands can
now be used on bitmaps larger than
1024x1024.

Program exit from Blitz mode was slightly
hairy due to Blitz2 not waiting for a
BlitFinished at the right time, all fixed now.

Rastport and ViewPort were returning
wrong results in the first release, not
anymore.

“Variable Already Shared" compile time
messages were appearing for no logical
reason, its been sussed.

Multiple byte fields in NewTypes were
causing odd address problems until v1.5 or
so, v1.6 has no such problems.

Ted lost the German chars and went NTSC
uncompatible in v1.5, he's recovered and is
now in a stable condition.

Slices on AGA machines were crapping out
until AGA arrived in NewZealand, as soon
as this happened (6 months after the rest of
the world) it was sorted out.

The optimiser was removed due to it's
ability to generate non 680x0 compatible

8

Blitz User Issue 3

code, may reappear in the near future.

Square brackets were causing a few
problems in NewTypes this was fixed
around v1.3.

The .info of source and object code is not
overwritten by Ted if it already exists so
image and position are not stuffed up by
resaving/creating your program.

In version 1.5 or so, the system libraries
were overhauled to handle the release of
3.0. This meant a LOT of the tokens were
changed and source code was NOT
backward compatible! SORRY. Anyway, to
get round this problem, programs that use
operating system calls should be loaded
into the older version of Blitz2, saved as
ascii (using Write-Block), and THEN loaded
into new version of Blitz2. This problem is
applicable to the QUICK-ASM example on
the examples disk.

AGA PALETTE HANDLING

Blitz 2's palefte object has (again) changed. Palette objects are now capable of
containing AGA compatible 24 bit colours.

The new palette objects look likethis:

NEWTYPE.rgbcomp

_red.l Jleft justified red component.

_green.| Jleft justified green component,

_blue.l Jleft justified blue component.

End NEWTYPE

NEWTYPE.palettedata

_nhumcols.w ;same as palette/_numcols.

_zero.w .for compatibility with graphics lib LoadRGB32.

_rgbs.rgbcomp(256) :256 is the max... the amount will actually
:depend upon the highest accessed palette entry.

_zero2.| .for graphics lib too.

End NEWTYPE

This is the actual object return by Addr Palette(n):

NEWTYPE.palette

_"data.palettedata ;00: NULL if no palette present, else a pointer to
;. palettedata.

_humcols.w .04: number of colours present in palettedata.
.below is colour cycling info.

_lowcol.w :06: low colour for cycle range.

_hicol.w ;08: high colour for cycle range.

_speed.w ;10: speed of cycle : 16384 = max speed, sign of speed

indicates cycling direction.

_varw :12: cvariable speed is added to.
more possible cycling entries....
4128 sizeof.

End NEWTYPE

Now for the new AGA functions added to Blitz 2...these will all generate
a runtime error if used on a non-AGA Amiga:

Statement: AGARGB

Syntax: AGARGB Colour Register,Red,Green,Blue

Modes: Amiga
Description:
The AGARGB command is the AGA equivalent of the RGB command. The 'Red’, 'Green’ and

'Blue’ parameters must be in the range 0 through 255, while 'Colour Register’ is limited to the
number of colours available on the currently used screen.

l Blitz User Issue 1,_ 9

Example:

AGA test

Screen 0,0,0,1280,512,8,$8024,"SUPER HIRES LACED 256 COLOR SCREEN",1,2
ScreensBitMap 0,0
For i=0 To 255
AGARGB,i,i/2,i/3,i :shades of purple
N Circle 640,256,i*2,i,i ;big SMOOTH circles
ext

MouseWait

Statement: AGAPalRGB

Syntéx: VAGAPal‘ﬁaB Palette#,Colour Register,Red,Green,Blue

Modes: Amiga

Description:

The AGAPalRGB command is the AGA equivalent of the PalRGB command. AGAPalRGB
allows you to set an individual colour register within a palette object. This command only sets

up an entry in a palette object, and will not alter the actual screen palette until a 'Use Palette’
is executed.

Function: AGARed

Syntax: AGARed(colour register)

Modes: Amiga

Description:

The AGARed function returns the red component of the specified colour

register within the currently used screen. The returned value will be within
the range 0 (being no red) through 255 (being full red).

Function: AGAGreen

Syntax: AGAGreen(colour register)
Modes: Amiga

Description:

10 Blitz User Issue 3

The AGAGreen function returns the green component of the specified colour register within
the currently used screen. The returned value will be within the range 0 (being no green)
through 255 (being full green).

Function: AGABlue

Syntax: AGABIlue(colour register)

Modes: Amiga

Description:

The AGABIue function returns the blue component of the specified colour register within the

currently used screen. The returned value will be within the range 0 (being no blue) through
255 (being full blue).

NEW SCREEN FLAGS

The superhires viewmode flag $20 is now acceptable, but should always be used in
conjunction with the standard hires flag of $8000.

The depth of a screen may now be specified up to 8 bitplanes (256 colours) deep (if you've got

an AGA machinel). Here's how you would go about opening a superhires, 256 colour screen:
Screen 0,0,0,1280,256,8,$8020,"MyScreen*®,1,0

3.0 BITMAP HANDLING

Blitz 2's Bitmap object has been upgraded to allow for interleaved bitmaps:

NewType.Bitmap

_ ebwidth[0] ;00: for compatability.

_ linemod.w ;00: value to get from one scanline to next.

_ heightw ;02: currently pixel height - but open to commodore ‘enhancement’.

_ depth.w ;04: number of bitplanes.

_ pad.b[2] ;06: nothin%.

_ data.l8] ;08: actual bitplane pointers.

_ pad2.b[12] ;40: zilch,

_ flags.w ;0=normal bitmap, <0=interleaved.

_ bitplanemod.w ;value to get from one bitplane to next. MAY BE 0!

_ xclipw ;pixel width for render clipping

_ yclipw ;pixel height for render clipping

_ cclipw ;number of colours available on bitmap (= 2*_depth)

_ isrealw ;0=no bitmap here, <0=blitz created bitmap, >0=borrowed
;64: sizeof

End NEWTYPE

Also, many Blitz2 bitmap related commands have been altered to take this new object into
account.

Blitz User Issue 2,

11

NEW GADGET HANDLING

A new bit, bit 9, in the ‘Fla(];s' parameter of the 'TextGadget' and 'ShapeGadget' commands
allow you to create mutually exclusive radio button type gadgets. These gadgets DO NOT
require Kickstart 2.0 to operate!

Here is an example of setting up some radio button style text gadgets:
TextGadget 0,16,16,512,1,"OPTION 1*:Toggle 0,1,0n

TextGadget 0,16,32,512,2,"OPTION 2*

TextGadget 0,16,48,512,3,"OPTION 3"

The new 'ButtonGroup’ command allows you to specify which 'group’ a series of button
gadgets belong to. See 'ButtonGadget’ below.

Note that if you are using button gadgets, you SHOULD really toggle ONE of the gadgets 'On’
before giving the gadgetlist to a window - as in the example above.
Text Gadgets may now be used to create ‘cycling’ gadgets. Again, these gadgets DO NOT

require kickstart 2.0 to work.

If you create a text gadget which contains the 'l ' character in the gadget's text, Blitz 2 will
recognize this as a ’cycling’ gadget, using the 'l * character to separate the options - like this:

TextGadget 0,16,16,0,1," HELLO | GOODBYEI SEEYA "
Now, each time this gadget is clicked on, the gadgets text will cycle through 'Hello",
'GOODBYE' and 'SEEYA'. Note that each option is spaced out to be of equal length. This
feature should not be used with a GadgetJam mode of 0.

Now for the new gadget commands:

Function: GadgetStatus

Syntax: GadgefStatus(GadgelList#,Id)

Modes: Amiga

Description:

GadgetStatus may be used to determine the status of the specified gadget. In the case of
"toggle’ type gadget, GadgetStatus will return true (-1) if the gadget is currently on, or false (0)
if the gadget is currently off.

In the case of a cycling text gadget, GadgetStatus will return a value of 1 or greater
representing the currently displayed text within the gadget.

Blitz User Issue 31

P

Statement: ButtonGroup

Syntax: ButtonGroup Group

Modes: Amiga

Description:

ButtonGroup allows you to determine which 'group’ a number of button type gadé;ets belong
to. Following the execution of ButtonGroup, an¥ button gadgets created will be identified as
belonging to the specified group. The upshot of all this is that button gadgets are only mutually
exclusive to other button gadgets within the same group.

"Group’ must be a positive number greater than 0. Any button gadgets created before a
'ButtonGroup’ command is executed will belong to group 1.

Function: Buttonld

Syntax: Buttonld(GadgetList#,ButtonGroup)

Modes: Amiga

Description:

Buttonld may be used to determine which gadget within a group of button type gadgets is

culrrentlg selected. The value returned will be the Gadgetld of the button gadget currently
selected.

Statements: Enable & Disable

Syntax: Enable GadgetList#,/d & Disable GadgetList#,Id
Modes: Amiga
Description:

A gadget when disabled is covered by a "mesh" and can not be accessed by the user. The
commands Enable and Disable allow the programmer to access this feature of Intuition.

Statement: SetGadgetStatus

Syntax: SetGadgetStatus GadgetList#,Id,Value
Modes: Amiga
Description:

SetGadgetStatus is used to set a cycling text gadget to a particular value, once set ReDraw

Blitz User Issua 3

13

should be used to refresh the gadget to reflect it's new value.
NEW GADGETS EXAMPLE:

E new gadget types
WBStartup:FlndScreen 0 ;open on workbench
TextGadget 0,32,14,0,0,"CYCLE 11 CYCLE 2| CYCLE 3" ;cycling gadget

ButtonGroup 1 ;first group of radio buttons follows
For i=1 To 5:TextGadget 0,32,14+i*14,512,i,"CHANNEL #"+Str$(i):Next

ButtonGroup 2 ;second group of radio buttons follows
For i=6 To 10:TextGadget 0,32,14+i*14,512,i,"BAND #"+Str$(i):Next

Window 0,20,20,160,180,$1008,"GADGET TEST",1,2,0 ;0pen window with gadgets

Repeat ;wait until close window gadget hit
ev.I=WaitEvent
Until ev=$200

DATE & TIME COMMANDS

Function: SystemDate

Syntax: SystemDate

Modes: Amiga

Description:

SystemDate returns the system date as the number of days passed since 1/1/1978.

Example:

5 date/time test

Dim d$(6):Restore daynames:For i=0 To 6:Read d$(i):Next
Dim m$(12):Restore monthnames:For i=1 To 12:Read m$(i):Next

NPrint Date$(SystemDate)

NPrint d$(WeekDar).' ",Days,"” ", m$(Months)," * Years
NPrint Hours,":",Mins,":",Secs

NPrint "press mouse to quit"

MouseWait

daynames:

Da¥a$ SUNDAY,MONDAY,TUESDAY,WEDNESDAY, THURSDAY,FRIDAY,SATURDAY
monthnames:

Data$ JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,0CT ,NOV,DEC

14

Blitz User Issué Z.

Function: Date$
Syntax: Date$ (days)

Modes: Amiga
Description:

Date$ converts the format returned by SystemDate (days passed since 1/1/1978) into a string
format of dd/mm/yyyy or mmv/dd/yyyy depending on the dateformat (defaults to 0).

Function: NumDays
Syntax: NumDays (date$)

Modes: Amiga
Description:

Numdays converts a Date$ in the above format to the day count format, where numdays is the
number of days since 1/1/1978.

Statement: DateFormat
Syntax: DateFormat format# ; 0 or 1

Modes: Amiga

Description:

DateFormat configures the way both date$ and numdays treat a string representation of the
date: 0=dd/mm/yyyy and 1=mm/dd/yyyy

Functions: Days Months Years & WeekDay

Syntax: Days Months Years & WeekDay
Modes: Amiga

Description:

Days Months and Years each return the particular value relevant to the last call to
SystemDate. They are most useful for when the program needs to format the output of the
date other than that produced by date$. WeekDay returns which day of the week it is with
Sunday=0 through to Saturday=6.

Blitz User Issue 3 15

Functions: Hours Mins & Secs

Syntax: Hours Mins & Secs
Modes: Amiga
Description:

Hours, Mins and Secs return the time of day when SystemDate was last called.

ENVIRONMENT COMMANDS

Functions: WBWidth Height Depth & ViewMode

Syntax: WBWidth, WBHeight, WBDepth & WBViewMode
Modes: Amiga
Description:

The functions WBWidth, WBHeight, WBDepth & WBViewMode return the width, height, depth
& viewmode of the current WorkBench screen as configured by preferences.

Functions: Processor & ExecVersion

Syntax: Processor & ExecVersion
Modes: Amiga
Description:

The two functions Processor & ExecVersion return the relevant information about the system
the program is running on. The values returned are as follows:

ExecVersion OperatingSystem Release Processor Part#
33 1.2 0 68000
34? 1.3 1 68010
36 2.0 2 68020
39 3.0 3 68030

4 68040

16

Blitz User Issue .’lpl

NEW DRAWING COMMANDS

Statement: Poly & Polyf

Syntax: Poly numpoints,*coords.w,color & Polyf numpoints,*coords.w,color{,color2]

Modes: Amiga/Blitz
Description:

Pol); & Polyf are bitmap based commands such as Box and Line. They draw poly:jgons
(unfilled and filled respectively) using coordinates from an array or newtype of words. Polyf
has an optional parameter color2, if used this colour will be used if the coordinates are listed in
anti-clockwise order, useful for 3D type applications. If color2= -1 then the polygon is not
drawn if the verticies are listed in anti-clockwise order.

Example:

5 polygon test using triangle newtype

NEWTYPE .tri:x0.w:y0:x1:y1:x2:y2:End NEWTYPE
BLITZ
BitMap 0,320,256,3
Slice 0,44,3:Show 0
While Joyb(0)=0
a.tri\x0=Rnd(320),Rnd(256),Rnd(320),Rnd(256),Rnd(320),Rnd(256)
W Zolyf 3,a,1+Rnd(7)
en

Statement: BitPlanesBitMap

Syntax: BitPlanesBitMap SrcBitMap, DestBitMap, PlanePick

Modes: Amiga/Blitz
Description:
BitPlanesBitMa&creates a ‘dummy’ bitmap from the SrcBitMap with only the bitplanes

specified by the PlanePick mask. This is useful for shadow effects etc. where blitting speed
can be speed up because of the fewer bitplanes involved

Statement: ClipBlit
Syntax: ClipBlit Shape#,X,Y
Modes: Amiga/Blitz

Description:

ClipBlit is the same as the Blit command except CIigBIit will clip the shape to the inside of the
used bitmap, all blit commands in Blitz2 are due to be expanded with this feature.

Blitz User Issue 3 17

Tri Analyse

Hi again 1o all you Blitz people out there. Well its early Juna and here in
New Zealand that means cold miserable winter. Perlect for programming
computers but terrible for tiathion training.

Triathlon training? Well the reason I brought that up is that is what the
accompanying programme is all about, It's a triathlon training database that
allows you lo enter you various types of raining info into a data file and
retrieve them with ease. It will also periorm some graphing functions which
't gointo later.

This programme shows you that Biitz is not just for wriling games (though it
certainly Is good at it) but can quite happily g ‘ 1

Dim cunentfle(32) :dim a 32 day month 1-31 for convenience

So we have a array called current, who has a subset of the newtype file,
which has 3 subsets of the type data, In this way we can easlly reference
dala for any discipline on any day example:

To access the lext about my cycle training on the 13th of a month would be

thetext$ = current(13)\dis{ 1 Mext

This is how ypes and nested ypes really come inlo their own.
Right now that we have the data structure we needed lo design the

Tri Analyse is bly and d
following things.

Set up screens & windows

how to do the

Set up gadgets inchuding textgadgets, string gadgets, and Sshowing some of
the new gadget ds p d elsewhere in this issue like mutual
exclude gadgets, and disabled gadgets

It also shows how convenient Newlypes are for sltoring records how
ing functions and stat can lidy up your code, and save you
byping!

How to usa the Amiga’s inbuilt kbrary functions from within Biitz

And much more!

As this is Blitz User Magazine and not a fitness publication | have put a
ascil fila called TriReadMe.Doc in the Tri diractory on the cover disk, for
details of how to use the programme please refer to that, If you are a
triathlete or cyclist o runner, | would hope that you find it useful, drop us a
line and let us know about your training.

Right, on with a description of the programming for all you code heads out
there.

| split Tri Analysa into two separale listings, the first (Tri.inc) contains all the
function and stalement definitions used by the main programme, the
function Is a Yes No requester which returns a true or false value lor the
main programme, and the statement is a simple alert requester to bring the
users attention to something. It then defines all the Newtypes (structures)
for the records to be stored in. When writing a database type programme
such as this you need to work backwards, the first thing you have 1o do is
decide on whal you want the programme to output, my requirements were
as foliows.

1. Each diskfile had to contain 1 months worth of training
2. Each day could handie inf for all 3 discip
Swimming, Cycling, and Running.

3. Each discipline had to hold the resting heartrate, what type of training
was actually done, and a string that described the training for the day.

ol the triathlon,

With this in mind | ended up with the following newtypes and arrays.

NEWTYPE.data
spaew Justin case
hearratew hearhate in BPM

rainw 0-endwrance 1 - aerobic

2- sprint (speed haining)
texts seditor generated text.
End NEWTYPE

NEWTYPE.fle :this s the record for a DAY

des.dota(3) :include the data newtype 3 fimesforthe 3 ;disc01
;2 swimming 0, cyciing 1, running 2

End NEWTYPE

18

 Blitz Useér Issue 1']

prog to filit.
First up | did the User Interface. Created your standard WBStyle 640x256
PAL Screen (sorry American users use one of those PAL ulils :)) Thena
window was generated, non draggable elc, simply for its ability to allow us
to attach a gadgetiist, and usa different sized fonts elc.

Then the gadgets, these had to be put in before the window was opened
obviously. | used GadgetBorder to divide the screen into logical segments
for groups of different operations, GadgetBorder is a purely cosmetic
lunction that does not affect gadgets at all but I think you will agree that it
can maka a display look a whole heap better. | set my gadgetpens to give
the buttons (lexgadgets) a 'raised look’ and designed all those, then
swapped the gadgetpens lo give a ‘reccessed’ look and did all the
StringGadgets. The last two Gadgets were designed with a bigger font and
the GadgetPens were sel for a raised look again.

Also at relevant points through-out the code, various gadgets were
assigned buttongroups (for the ones that were set up for mutual exclude)
and certain gadgets were preset on or disabled completely (sea later in this
issue of Biitz User #4 for details on the new Gadgel commands.)

Right now the interface was out the way. All that remained was the main
gadget handiing loop (the event loop), And the coding of all the subroutines
1o deal to the entered gadget data in a meaningful way.

Ok, the way | had designed this programme in my mind the plece of data on
which all others relied was the entering of a valid date, after all all the
various bits of the Yp were refs from the date so if a
valid date was nol there then no entered data would be valid either.

So the first subroutine | did was the checkdale one.

The checkdate routine does quite a b, the first thing it does is check the
length of the siring we enlered since it wants DD/MM/YY formal if the siring
Is not the correct length (8) we can assume the date is invalid and tell the
user I the length is correct we extract two sets of dala the individual day
month and year are stored as strings for use in the filesave and load
foutines, and are aiso converted to numeric variables for use in the various
offsels in the arrays and newtypes. We then check the individual values for
BASIC validity (we assume that every month could theorelically be up 1o 31
days long as it does not affect the lile, saves a lot of checking and at worst
the user could creale something like the 30th of Feb - A bit lazy on my part
but no big deal.) If the date syntax is invalid wa tel the user via a nilty alert
function and set the date flag 1o false, at the end of this if the date is false,
we clear the datefield and walit for the user to enter another date.

Right, now that we've established that we have a valid date we sel the date
flag to true, we then check that the month we have asked for is not an
already open flle if we have asked for a new month, we save the old month
(il there is no old month a dummy yearfile will be written but this once again
is a few bytes and not a problem. Now that we have saved the oldmonth we
make the oldmonth the currentmonth and go and try and read our current
month. If we successfully read it, we resel the fileread fiag to false (o its
rechecked nexiime) otherwise, the read of the month must have failed so
we have to create a new one, firs! of all we zero all the data fields so our
new month does not get the last months data, and then we create the file.

It way back at the first siep the month of the date we entered was the
SAME as the last entry we do NO file-handling, as it is atready open, This
routine is quite a groovy way of handling records as it eliminates excessive
disk access and shields the user from having to load files.

Now that the checkdate routine has been completed we then check 1o see if
a valid date was the result again (by the date flag) and if so relresh our

mutual exclude gadgels so that they lake note of any changes in training
type on our new day, this has the advantage that if there is no training
currently entered for that day the two banks of gadgels are sat to a known
stale (ie SWIMMING and ENDURANCE).

All the other gadget events are 10 do with handling all the other bits of the

g like ch 9 plines and training types, editing data,
g:aphmq it, saving dam (as you need to do this for the last month you do
belore quitting the programme) setting our default editor type and quitting
the prog, lals taka a brief look at a few of thesa routines.

1. Selecting your own text editor

| am too lazy to write my own fext edilor, also they are rather a beast to
write so rather than re-invent the wheel I've decided to take advantage of
Blitz 2's ability to utilise the Amigas operating system calls. The call | am
using here is the "Execute_’ function, which goes away and execules a
programme. One annoying thing about the Execute_ function is that it
requires the Run command to be present in the C: directory bul that is the
norm rather than the exceplion so as long as the user is told about this in
the documentation its OK.

The other thing to be wary about the execute command is that some

run as a detached process, this means when you execute
them they run, but detach th from your prog and return
control to your programme, Cygnus-Ed is an exampie of a editor thal does
this. This 'feature’ sucks as far as we are concerned so use 8 nice
ATTACHED editor such as TED or Ed or something.

So to implement a Editor in our programme we have done two things

1. Given the user the ability to enter his own command string for his editor
of choice and save it in a prelerences or config file so that its all set up for
him next time (Case 3 in the main loop)

2. When the person goes 10 edil some lext we once again check for a valid
date, then call the Execute) function with the pathname and the command
for tha editor, and two nulls for the other arguments. We return a result that
wa check for success, but | have since found out that Execute rolums a
true result even if the of the was not GO
FIGURE? This is not to much of a prob cos the average clued up user is
going o go "Hmmm no editor here, perhaps my command string is wrong’
and go and fix the problem.

| am also making the rather naughty assumplion that everyone is going to
have a ram: disk as | originally wrole this programme for my own use only
and only decided to put it on biitz user at the last minute. So if you don't
have a ram disk, you can substitute your own desired disk device and
recompile the source, (if its someone that doas not own Blitz Basic - Tuff
luck :-)

the user is then to enter the text which gels saved in a file called ram:temp
which upon exiting the editor we store in the current days and disciplines
text field, VIOLA

2. Altering our training types and disciplines

This is a piece of cake, if the gadget is clicked on by you (or it Is altered in
the relresh process, we simply have two variables curdis and curtype which
wa set lo the various flag values for inputting data into our newtype.

3. The Heartrate

The heartrate, simply type in a number we go away and convert this string
fo a numerical value and store it in all 3 disciplins for the current day, (This
is because you only have one resting heart rate a day, not one for each
discipline). Note how I've set the stringgadget entry length 1o 3 chars max,
this is good cos your never going 1o have a heartrate of 999, and it means
wae don't have 1o check thal a number o big to be a WORD value is going
to be entered.

4. Read todays Training

Tha read todays training simply grabs the days training, dumps it back out
to the ram:temp file (so that it can be re-edited as well) and views it using a
little text viewer.

5. Refreshing the Gadgets via software for a new
date or discipline

When we do the relfresh gadgets for 8 new date or discipline, you will nolice
that there is little border imes left round the ‘unselected’ gadgels, this
is something 10 do with the way Mark handles the gadgels in gadgetiib and
1 have not worked a way round it, | will ask mark if it can be changed, or
maybe even (SHOCK HORROR) I'm just programming it wrong :-)

Notice that the way the gadget refresh is programmed is modular ie: When
there is a new dale you have 10 refresh both the hearirate and the lraining
type. So you have two refresh routines and you then call both those with
another routine called refreshall. However if ils just a discipline thal's
changed all you do is call the refreshdis routine, this is an example of tidy
modular code.

6. The Graph Routine

The graph routine simply takes the dala for the current month loads a IFF
backdrop of a graph (which was created with a separate little blitz prog),
and then if the hearlrate falls between certain values it uses some math lo
work out how high and where and what colour to plol the heartrate.

7. Miscellaneous

This programmae is far from perfect, it assumes 100 much and the way the
editor s called is a vifle crusty, however it suites my purpose fine and it is a
good example of how to work round problems if lime or ability stops you
from doing something (try writing a text editor one day and you'll see what |
mean :-)

1 have put the littie graph maker programme in the directory as well, all this
did was draw out my graph and print all the numbers in the right place and
sava it as an IFF, this is a good example of littie pieces of utility code that
can save you time, it would have taken heaps longer to design the graph
and put all the little numbers down as brushes than it did 1o plot them out
using bit of math, the results are accurate 100.

One Interesling aside about the Graph creator Is that it shows a way of
cheating when you want to use non 8x8 fonts on a bilmap, simply open a
full screen invisbble window to do your font drawing on and then convert (o 8
bitmap aherwards.

8. Functions and Statements

The two requesters designed in tri.inc are good examples of how to make
your code, smaller, more reliable and easy 1o understand and develop

The yes no function just opens a window with a gadget list, waits for a
gadget event from that window , if its a yes the function returns true
otherwise if its a no it retwrns faise. This enables you to act on the result of
the requester in your code.

The alert function opens a window with a gadget list, waits for a gadget
event from that window, if the ok gadgel is pressed then the window closes
and your programme is able 1o continue.

Both the function and allow the prog! to display a line of
centred text and allow the user to answer the requester using ESC=NO
RETURN=YES keys thus making the programme more versiila.

These are probably one of the best examples of lidy modular coding in the
whole project, s0 now that you have seen just what sort of things you can
do with user defined functions/statements... Use them yourseff.

Wall that's it basically, as | said lor the athieles out there of you the actua!
documentation for USING Tri-Analyse is on the disk, hope this gives you all
some inspiration lo start developing in Blitz.

Seeya

Roger.

Blitz User Issue 3

19

BEGINNERS COLUMN

Welcome.

Hi there, and welcome to the first in what will hopefully be the
first in a long line of tutorials on BASIC and in particular Blitz

Ok now lets explain all that techno-Jargon above.

The following 3 varlable types (.b .w 1) can only hold whole
b not dec tional values, they are also numeric
iables so they can not hold characters of the alphabet or

Basic. | say ‘hopefully’ b the of this col
depends on you, lho user.

| want to get as much feedback from you people on what you
want so that | can run the beginners column and also | want to
have a code clinic were you write your specific problems to us,
and either myself or one of us here helps you on your way.
When | say problems, | don't mean a ‘how do | write p

other symbols than numbers.

.b (BYTE). A byte is one memory location, all the unsigned and
signed jJargon means that if the byte ONLY has to hold a
POSITIVE number then it is unsigned, i it has to hold both
POSITIVE and NEGATIVE numbers then it is signed. When a
variable is signed it can only hold half the amount of its

letter but a letter asking about copper effects, or dual playfield
would be fine.

| am going to start at the very beginning so for some of you this
will seem quite simple, but bare with me as we will be covering
things thoroughly and even the more experienced of you may
pick up little bils as we go along.

VARIABLES.

The first thing | want to lnlroduce that's part ol BASIC (and
Indeed every prog is

A variable Is simply a ptace] momory where somolhlng is
stored, rather than having to know this particular place in
memory (which could be anywherell) you simply can store
things and retrieve things from a variable. Variable names can
be up to xxx chars long, must not be a Reserved Word (ie: you
could not have a variable called Window) and must either start
with a letter or a underscore *_’

These variable names are INVALID

12345 can not contain numbers

my name can nol contain spaces

bitmap is a Blitz Basic RESERVED WORD

Theso variable names are VALID
perfectly acceptable but a bit obscure
my name the underscore makes it A-OK

counter this is fine
_bitmap since the underscore precedes this itis
not a RESERVED WORD

Ok now we know what a valid variable name is its time to find
out what we can put in them. There are six different types of
primitive variable in Blitz Basic here is a table of them.

1. The reason for this will be shown next
Issue when we go into ‘how computers count’ but for this month.
Just believe me.

.w (WORD). A word Is two memory locati
above the maximum possible value of a word is halved when it
becomes signed.

{4 (LONG). A long is four ive memory , the
signed, unsigned bit applies to this as well.

The following two variable types are for holding real or decimal
or fractional values they are

.q (QUICK) A quick is four tive memory locati the
first two locations contain the whole number (the value beloro
the decimal point) the last two locati tain the fracti
value to 4 decimal places (the value after the decimal point). the
signed, unsigned is again applicable to quicks.

{ (FLOAT) A float is four consecutive memory locations, the
first two locati in the whole ber (the value before
the decimal point) the last four locati tain the fracti
value to up to 7 decimal places (I think) (the value after the
decimal point). And yep you guessed it, the signed unsigned bit
is once again applicable (phew) It uses FFP calculation.

The next variable type is what you would use to hold anything
(characters, symbols like %*$&*m, sentences efc elc) it is the .«
type or STRING

NOTE: In keeping in line with most versions of basic a .s
variable can also be specified by the ‘$’ sign

.8 or $ (STRING) A string ists of a of
memory locations which is entirely dependant on the length of
the string, however, a string always ends in a NULL byte (‘0').
The signed and unsigned bit DOES NOT APPLY to strings at
all since they ARE NOT numerical values and arithmetic is not

Ok so now you know all the variable types, how do you use
them well thats real easy you simply in BASIC say

 Blitz User Issué 3 |

ple you had a byte variable called myage and you
wanted to put the number 22 into it you would type the following

Simple huh?, note that once myage is DEFINED as a BYTE
variable (by the .b suffix) you don't have to put the .b on every

TYPE Suffix Holds performed on them.

BYTE b Signed: +/- 128
Unsigned: 0 to +256

WORD | w Signed: +-32768 variable.type = value
Unsig + 65536 So for

LONG 1 Sgned: _+/- 2147480648 vl

auick | q Signed: +/- 32768.0000 myage.b = 22
Unsigned: + 65536.0000

FLOAT | Signed: +-9x 10 18
Unsigned: +/-9x 10419

STRING S A collection of characters

reference to it ie:
myage.b =22 ;| am 22 years old
myoge =15 ;myage is alr defined as o

gPyte and | must have found the

ountain of you

However with a string you must always reference it as a string
as it is possible to have a.b and a$ but not possible to have a.b
and a.w.

Ok, here are some examples of variables and the values that
can be put into them.

myage.b =120
counter.w = 3000

bignum.l = 1000000
frac.q =3.75

bigfrac.t = 3.14576254675
myname.s = “Roger”
lastname$ = “Lockerbie”

Ok, as you can sea its all pretty easy stuff (you don't have to
line up the ‘=’ signs, | just did that for neatness, one thing to
notice is that all literal strings have 1o be in quotes.

So thats variables, lets look at some of the things we can do
with them.

onumber.b = 5+5 ;you can store arithmetic
;results in them or

firsthumb = 5 ;you can add

seconnum.b = 4 ;variables together or

resultnum.b = firstnum + secondnum
firsiname.s = “Roger * ;notice the space
?ecnome.s = "lockerbie”

ullname.s = firstname.s + secname.s

From the last example you will notice when we add to variable
slrings together we don't put quotes round them, you only put
quotes round a string if you are literally defining a string le:

junk.s = “This is junk “ ; a literally defined string
mrjunk.s = “And more” ;another literal string
totaljunk.s = junk.s + mrjunk.s

Fina. If your still with us then your doing good, Now here's a test
for you, in the table below are some values, assuming each
variable can be used to its UNSIGNED maximum place the
most appropriate variable type to be used for it in the box next
to it. The first one is done.

.b,.b,.w,.b,l.q.80rS .q.w.f

If you got these wrong, then re-read the above sections so that
you understand why we arrived at these answers. If so then
your ready for the next little test

Assume these ones are SIGNEDI!!

Value

250
k3
30000
60000

1

Value Type

12

56

1000

79

110001

25

BANANA
3.752

380
3.7528675647

Frrerrrit e

Ok the answers (including the one | did) from top to bottom
should be.

Ok now the answers.
w,.b,.w, .l

Now if you are confused remember that a SIGNED byte can
only hold up to +/- 128 since we made the assumption that all
the variables were going to be SIGNED (ie: possibly hold a
positive or negative number) then we would have to say 250
would be the next highest variable type ie a WORD.

The next one is 32 which will fit into a BYTE no matter whether
its positive or negative

Likewise 30000 positive or negative will fit into a WORD

60000 as a SIGNED value will not fit into a word, sowe gotoa
long. if the variable that 60000 was never going 1o conlain a
negative number then we could assume it 1o be UNSIGNED
and 60000 would have fitted into a word, however we didn't so it
cant.

What is the upchuck of all the Signed and Unsigned crap you all
ask. Well simply....

If you put a negath ber into a variable and then try to put a
posilive one in greater than the SIGNED maximum it wont work,
Likewise if you put 255 into a .b variable and then try to put -120
It wont work either, usually the easiest way in the beginning Is to
treat each type of variable as SIGNED and only put the
SIGNED maximums into each, thats what we will be doing.

I've got a bit heavy and deep in the last few paragraphs, so if
your getting lost, don't worry, were back onto easy street now
5o lets actually do some prog ing

BEING ABLE TO SEE STUFF AND
ENTER IT

All this variable handling is nice, but unless you can actually
display results and get people to enter something then its not to
useful. Enter the following Blitz Basic Commands.

Introducing Nprint and MouseWalit

Nprint is a blitz basic command lo print stuff to the screen, the N
in front of the print implies that once its printed something, the
next thing printed will be on the next line down.

Ok crank up blitz basic and type in the following programme.

firstname$="Roger *
lastname$ ="Lockerbie”
Nprint firsihame$ +lastname$
MouseWait

Blitz User Issue 3

21

Now compile and run it (if you are unsure of how to do this and
other basic compiler stulf then read the relevant chapters in the
user guide).

What we have done is made the variable firstname$ = the literal
string “Roger”, lastname$ = “Lockerbie” and then added them
together and printed out the result, the mousewalit just waits for
the left mouse button lo be clicked so that we can see the result
of our programme belore we are returned to Bliitz.

Ok now lets look at a different way of doing this

firsname$ = "Roger”

laslnome$ = “lockerbie”

fullname$ = firstname$ + lasiname$
Nprint fullname$

MouseWait

Exactly the same result, however this time you can see that you
can assign the result of adding to another variable.

Right, now a little number example

firstnum.b = 10

secnumb =20

thirdnum.b = 2

sum.b=firstnum + secnum / thirdnum
Nprint sum

MouseWait

and the number 20 should be printed on your screen because
10+20/2=20.

At this point some of you might jump up and down and say 10 +
20/2 = 15 but it does nott This is because computers (and
humans supposedly) work with what is known as Arithmetic
Precedence.

All that fancy saying means is that numerical sums are
evalualed in a certain order.

Maybe you remember the acronym BODMAS from your school
days, well here it is to refresh your memory.

Brackets

of

Division

Muttiplication

Addition

Subtraction

So anything that is surrounded in brackets is evaluated first,

followed by any division, then multiplication, then addition, then
subtraction.

So 10 + 20/ 2 Is actually worked out by the computer as

2072 =10
+10 = 20

do division first
no multiplication so do addition next.

1 you want to force the computer to evaluate in a certain order
then you use brackets, so for example to get the computer to
come up with the 15 some of you were expecting (by evaluating
left to right the equation would become

(10+420)/2

Which says....

(10 + 20) => 30
30/2 = 15

do the brackets first
and then the division

So the same programme slightly modified would now give you
15ie:

22

~'Blitz User Issue Z.I

firstnum b = 10

secnumb =20

thirdnum.b = 2

sum.b= (firslnum + secnum) / thirdnum
Nprint sum

MouseWait

Groovy, you now have the basics of Arithmetic Precedence
(see all these flash computer words are not that difficult after
all).

Also just as you can use literal strings you can use literal

" numbers as well ie the above programme could have been

written

sum.b = (10 +20) / 2
Nprint sum
MouseWait

or even

Nprint (104+20) /2
Mousewait

Ok so thats printing to the screen and basic variable handling
covered, Now for some real stuff!!l, Taking input from a person
and doing hing with it (p ing It — Jargon speak).

Here Is a programme for you to type in

;Simple 2 number adder by Roger
firstnum.w = Edit(5)

secnum.w = Edit(5)
sum.wa=firstnum+secnum

Nprint firsthum + *+* + secnum + "=" sum
MouseWait

when you compile and run this programme you get a cursor,
enter a number between 1 - 1000 and press enter

you'll get a second cursor, enter a second number between 1 -
1000 and press enter

You'll then get a nice printout of the two numbers and the result
of them added together, press the mouse to return to Blitz.

CONGRATULATIONS!! Thats a genuinely useful (if somewhat
simple) programme lets break it down and see what it does.

Ladies and Gentleman... Edit I1!

The first thing you notice is that there is a new command in the
listing called Edit. Edit is the same as INPUT in other versions
of Basic and the parameter bety the brackelts is the b
of characters that edit will take notice of. also the variable that
receives Edit must be of a numerical type (.b .w .1 .q .f) ie:

myvar.b= Edit{2)
Nprint myvar
MouseWait

If you ran that programme, got a cursor and typed 200 myvar
would only equal 20 as you told it in the edit command to take
notice of the first 2 characters entered only.

firstnum.w = Edit(4)

secnum.w = Edit{4)
sum.w=firstnum+secnum

Nprint firsinum + “+" + secnum + “=" sum
MouseWait

So the first line assigns a WORD variable called firstnum to take
up lo 4 numerical digits entered by the user of the programme
(YOu).

The next line takes a second up to 4 digit number from you.

The next line adds those two numbers together and stores them
in the variable sum.

The third line is Nprint with some interesting stuff if you read
along the Nprint line it first prints the firstnumber then it prints a
literal plus sign on the screen then the second number, then the
literal equals sign on the screen then the sum variable.

So if you entered the numbers 100 and 40 it would look like this
100

40

100+40=140

Viola! Easy stuff huh, we are now going onto making stuff look a
bit nicer and inputting strings.

NOTE: The last Nprint stalement in the above listing down lo
were it says acquaintance" is actually to be typed in as one line,
its just spilt into three because of the column width.

Right, by this stage what should be going on should be self
explanatory, | will mention one thing before | leave you, the use
of comments.

Comments in blitz basic are proceeded by a semicolon after the
semicolon you can type whal you like and it will be ignored by
the compiler until you start a new line.

Commenting your code is a MUST, it is a habit to get into right

from the beginning and one which every professional computer

programmer does, the reason you do it is because while what

you are doing in your code might seem obvious at the time, look

at it in 2 days, weeks, years time and it will look like gibberish.

Put some comments in there and It will MUCH easier for you (or
else) to d what the heck is going on.

Righlo thats it for this issue, hope | have not bored you all into
submission, the next newslelters beginners column will be how
computers count, and how lo get your programmes lo make
decisions (programme flow is the jargon term). Until then,
WELL DONE, don't stop here though, experiment, look at other
listings, look at the manuals, PLAY AROUNDII! No-one can
teach you all about programming experi and |]

It would be nice to be able to prompt the user 1o type thi
in rather than just having a blank cursor, the Print statement will
leave the cursor just at the end of what its printed making it
perfect for this purpose.

The Amazing Mr Edit$

Ok now you've got ber input and printi inations of
Hmlmllnndvuhbluwsudlhﬂmobhvm.youlo
Edits.

Which Is a piece of cake as its just the same as Edit excepl you
can type in anything and the variable that receives it must be a
string variable (.s or §)

le:
stuff$=edit$(5)

If you ran that and entered "kazoongas® as your data, a$ would
equal “kazoo"

Ok, time for our final programme for this instalment

; Nice litfle Greeting programme
Print “Please enter your first name: “

firstname$=Edit$(20)

Print “Please enter your last name: “

lastname $=Edit$(30)

Nprint “* |eavo a nice blank Iine

Nprint “Hi “+firstname$ + * * + lasiname$ + *,
My Names Mr Blitz Basic, A pleasure to make your
acquaintance”

MouseWait

gh your and triumphs Is the best wuy
Lastly, | want some feedback from you all if this Is useful, one
type of feedback from the b and another from the more

mumdmouohuvhgwobhnnhmmuouluw
CODE CLINIC area. If | don't get any feedback, I'll assume no-
one wants any information and won't bother so write ini!l

Happy coding, and if you've written something (blg or small)
and want to share It with us, send it in. Next issue there will be 8
code competition, but for this issue, the best thing | receive from
both a begi and an exp d coder will win a free copy
of the new improved user guide (if you already have it, its a a5
size booklet the new one not a4, then tell me that in your letter
and if you win I'll send you something else decent.)

Happy Coding and Good unW

Blitz User Issue &. 23

